
THEORY OF COMPUTING, Volume 18 (19), 2022, pp. 1–22
www.theoryofcomputing.org

SPECIAL ISSUE: CCC 2020

Sign-Rank vs. Discrepancy

Hamed Hatami
∗

Kaave Hosseini
†

Shachar Lovett
‡

Received August 11, 2020; Revised May 2, 2022; Published July 9, 2022

Abstract. Sign-rank and discrepancy are two central notions in communication

complexity. The seminal paper by Babai, Frankl, and Simon (FOCS’86) initiated

an active line of research that investigates the gap between these two notions. In

this article, we establish the strongest possible separation by constructing a boolean

matrix whose sign-rank is only 3, and yet its discrepancy is 2
−Ω(=)

. We note that

every matrix of sign-rank 2 has discrepancy =−$(1).
In connection with learning theory, our result implies the existence of Boolean

matrices whose entries are represented by points and half-spaces in dimension

3, and yet, the normalized margin of any such representation (angle between the

half-spaces and the unit vectors representing the points), even in higher dimensions,

is very small.

In the context of communication complexity, our result in particular implies that

there are boolean functions with $(1) unbounded-error randomized communication

complexity while having Ω(=) weakly unbounded-error randomized communication

complexity.
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HAMED HATAMI, KAAVE HOSSEINI, AND SHACHAR LOVETT

1 Introduction

Sign-rank and discrepancy are arguably the most important analytic notions in the area of

communication complexity. Let �X×Y be a matrix with {−1, 1} entries (we refer to these

matrices as boolean matrices in this paper). The discrepancy of � is the minimum over all input

distributions of the maximum correlation that � has with a rectangle. More formally,

Disc(�) B min

�
max

(⊆X
)⊆Y

��E(G,H)∼�[�G,H1((G)1)(H)]�� , (1.1)

where the minimum is over all probability distributions � on X ×Y.

The classical concept1 of discrepancy was applied to Hadamard matrices (boolean matrices

with orthogonal rows) by Brown and Spencer2 in 1971 [6] to analyze the Gale—Berlekamp

switching game (see [13, Ch. 15]). Adapting their method, Chor and Goldreich [11] applied

discrepancy to randomized communication complexity. In deterministic communication

complexity, discrepancy was used by Babai, Nisan, and Szegedy [3] to prove lower bounds

for the deterministic communication complexity of Generalized Inner Product (GIP) in the

number-on-the-forehead model. Nowadays, discrepancy has become one of the most commonly

used measures in communication complexity, especially to prove lower bounds for randomized

protocols.

The sign-rank of �, denoted by rk±(�), is the minimal rank of a real matrix whose entries

have the same sign pattern as �. This natural and fundamental notion was first introduced by

Paturi and Simon [22] in the context of the unbounded-error communication complexity. Since

then, its applications have extended beyond communication complexity to areas such as circuit

complexity [8, 23], learning theory [18–20], and even connections to algebraic geometry [29].

Boolean matrices in communication complexity correspond to boolean functions: given an

=-bits two-player function 5 : {0, 1}= × {0, 1}= → {−1, 1}, it corresponds to the 2
= × 2

=
matrix

�G,H = 5 (G, H). The notions of discrepancy and sign-rank for 5 are defined as the respective

quantities assigned to the corresponding matrix.

Our work is motivated by the following main informal question.

Problem 1.1. Does every function of low sign-rank have an efficient randomized protocol?

If the answer is negative, then the next question is, does it at least have large discrepancy.

(Small discrepancy is one technique to prove randomized communication complexity lower

bounds, but there are functions showing separations between the two measures, for example

set-disjointness [9].)

Problem 1.2. Does every function of low sign-rank have large discrepancy?

In order to build some intuition towards more quantitative questions, let us consider some

well-known examples:

1Bernard Chazelle writes in the Preface of his book “The Discrepancy Method” [10]: “Discrepancy theory grew

out of a question posed by van der Corput [12] in 1935: ‘How uniform can an infinite sequence in [0, 1] be?’ ‘’
2Erdős and Spencer credit the key lemma to J. H. Lindsey (John Hathway Lindsey II).
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• Greater-than: we interpret G, H as integers in {1, . . . , 2=} and define 5 (G, H) = 1 if G ≤ H
and 5 (G, H) = −1 otherwise. This function has sign-rank 2 and requires Θ(log =) bits of
randomized communication [21]. Moreover, its discrepancy is =−Θ(1), which proves the

communication lower bound.

• Set-disjointness: we interpret G, H as subsets of [=], and define 5 (G, H) = 1 if G, H are

disjoint and 5 (G, H) = −1 otherwise. This function has sign-rank $(=) and requires

communication complexity ofΘ(=) bits. However, this cannot be shown using discrepancy,

as the discrepancy of set-disjointness is =−$(1) [9].

• Sherstov [27] constructed a function with sign-rank $(=) and discrepancy 2
−Ω(=)

.

Thus, it seems that functions with logarithmic sign-rank can already be very complicated,

both in terms of their randomized communication complexity and also in terms of their

discrepancy. However, the situation is less clear for functions of constant sign-rank.

Problem 1.3. Does every function of constant sign-rank have an efficient randomized protocol?

In particular, does it have large discrepancy?

Our main result is a resounding no, already for sign-rank 3.

Theorem 1.4 (Main Theorem). There exists a function 5 : {0, 1}= × {0, 1}= → {−1, 1} of sign-rank 3

and discrepancy $(= · 2−=/8) = 2
−Ω(=).

Note that, it follows from the bound on discrepancy that the function 5 in Theorem 1.4 has

Ω(=) randomized communication complexity.

The sign-rank 3 in Theorem 1.4 is tight. We show in Section 3 that functions of sign-rank 1

or 2 are very simple combinatorially, and in particular have discrepancy =−$(1) and randomized

communication complexity $(log =).
The function 5 in Theorem 1.4 is simple to define: the sign on an inner product in dimension

3. Concretely, let" ≈ 2
=/3

. Alice gets a vector a ∈ [−","]3 and Bob gets a vector b ∈ [−","]3.
Define

5 (a, b) = sign〈a, b〉,

where sign : ℝ→ {−1, 1} is the sign function, mapping positive inputs to 1 and zero or negative

inputs to −1; and 〈·, ·〉 is inner product over the integers. It is obvious from the definition that 5

has sign-rank 3. We prove that its discrepancy is exponentially small. The actual function we

study is a mild restriction of this function, convenient for the proof. See Theorem 1.9 for details.

1.1 Connections to learning theory

Note that the sign-rank of an # × # boolean matrix � is the smallest 3 such that there exist unit

vectors D8 , E 9 ∈ ℝ3
with �8 , 9 = sign(〈D8 , E 9〉) for all 8 , 9 ∈ [#]. These unit vectors D8 , E 9 represent

� as points and half-spaces in the 3-dimensional space: �8 , 9 = 1 iff the point D8 belongs to the

half-space {I : 〈I, E 9〉 > 0}.
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The geometric representations of boolean matrices as points and half-spaces is central to the

theory of learning. In this context, every column 9 of � corresponds to an object in some domain.

The vectors E 9 ∈ ℝ3
, which are called feature vectors, represent each object by 3 numerical features.

A classification algorithm receives as input a sample (91 , �8 , 91), . . . , (9< , �8 , 9< ) for an unknown 8,

and its task is to predict �8 , 9 for other values of 9. For example, linear classifiers, such as support

vector machines, aim to produce from the samples a vector D such that sign(〈D, E 9〉) is a good
predictor of �8 , 9 = sign(〈D8 , E 9〉).

While sign-rank optimizes the dimension (i. e., the number of features), there is a second

natural parameter that is associated with such representations. The quantity min8 , 9 |〈D8 , E 9〉| is
called the margin; it measures the smallest distance between the points D8 and the hyperplanes

defined by E 9 .

The margin of an # × # boolean matrix �, denoted by m(�), is the largest possible margin

attainable by such representations. More formally,

m(�) B sup min

8 , 9

��〈D8 , E 9〉�� ,
where the supremum is over all 3 ∈ ℕ and unit vectors D8 , E 9 ∈ ℝ3

with �8 , 9 = sign(〈D8 , E 9〉).
Dimension and margin are two important parameters that impact the performance of these

algorithms. It is desirable to represent the matrix � in a smaller dimension and with a large

margin. Therefore, the problem of understanding the relation between sign-rank and margin is

an important one. Note that sign-rank minimizes the dimension while allowing the margin to

be arbitrarily small, and in contrast, margin maximizes the margin of the representation while

allowing the dimension to be arbitrarily large.

Due to the mentioned connections to the theory of learning, the notion of margin had been

mainly studied in that context, but Linial and Shraibman [20] proved that margin is essentially

equivalent to discrepancy:

Disc(�) ≤ m(�) ≤ 8 Disc(�).

In light of this equivalence, our main result (Theorem 1.4) can be reformulated as the following.

Theorem 1.5 (Reformulation of Theorem 1.4). There exists # × # matrices � with sign-rank 3 and
margin $(log(#)/#1/8).

In other words, even though it is possible to represent � in dimension 3, any representation

of � in any dimension will have a very small margin.

It is worthwhile to contrast Theorem 1.5with Forster’s seminal lower bound for sign-rank [14].

Forster proved that in the representation �8 , 9 = sign(〈D8 , E 9〉) by unit vectors D8 , E 9 ∈ ℝ3
, it is

possible to transform the vectors so that the vectors E 9 are in a so-called isotropic position. This

in particular implies

E8 , 9∈[#] |〈D8 , E 9〉| ≥ E8 , 9∈[#] |〈D8 , E 9〉|2 =
1

3
.

In other words, when sign-rank is small, there are representations with large “average” margin.

In the specific case of the matrix � in Theorem 1.5, there exists a representation of � with unit
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vectors D8 , E 9 ∈ ℝ3
such that

E8 , 9∈[#] |〈D8 , E 9〉| ≥
1

3

,

while Theorem 1.5 shows that in any representation (in any dimension), we have

min

8 , 9∈[#]
|〈D8 , E 9〉| ≤ $(log(#)/#1/8).

Finally, let us mention that regarding the converse direction of the relation between sign-rank

and margin, Linial, Mendelson, Schechtman, and Shraibman [19, Corollary 3.2, Lemma 4.2, and

Section 8] proved the inequality rk±(�) ≤ m(�)−2 · log(#), and asked whether the log factor in

this inequality is necessary. In fact the following question remains open.

Question 1.6. Is there a function � such that for every boolean matrix �, we have rk±(�) ≤
�(m(�)−1)?

1.2 Connections to communication complexity

Theorem 1.4 is motivated by its applications in communication complexity. Consider a

communication problem 5 : {0, 1}= ×{0, 1}= → {−1, 1} in Yao’s two party model. Given an error

parameter & ∈ [0, 1/2], let '&( 5 ) be the smallest communication cost of a private-coin randomized

communication protocol that on every input produces the correct answer with probability at

least 1− &. Here private-coin refers to the assumption that players each have their own unlimited

private source of randomness. Three natural complexity measures arise from '&( 5 ).

1. The quantity '
1/3( 5 ) is called the bounded-error randomized communication complexity of 5 .

The particular choice of 1/3 is not important as long as one is concerned with an error

that is bounded away from both 0 and 1/2 since in this case the error can be reduced by

running the protocol constantly many times and outputting the majority answer.

2. The weakly unbounded-error randomized communication complexity of 5 is defined as

PP( 5 ) = inf

0≤&≤1/2

{
'&( 5 ) + log

1

1 − 2&

}
,

that includes an additional penalty term, which increases as & approaches 1

2
. The purpose

of this error term is to capture the range where & is “moderately” bounded away from
1

2
.

3. Finally the unbounded-error communication complexity of 5 is defined as the smallest

communication cost of a private-coin randomized communication protocol that computes

every entry of 5 with an error probability that is strictly smaller than
1

2
. In other words,

the protocol only needs to outdo a random guess, which is always correct with probability

1

2
. We have

UPP( 5 ) = lim

&→ 1

2
−0

'&( 5 ).
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In their seminal paper, Babai, Frankl and Simon [2] associated a complexity class to each

measure of communication complexity. While in the theory of Turing machines, a complexity

that is polynomial in the size of input bits is considered efficient, in the realm of communication

complexity, poly-logarithmic complexity plays this role, and communication complexity classes

are defined accordingly. Here, the communication complexity classes BPP
cc

, PP
cc

, and UPP
cc

correspond to the class of communication problems { 5=}∞==0
with polylogarithmic '

1/3( 5=),
PP( 5=), and UPP( 5=), respectively.

Note that while BPP
cc

requires a strong bound on the error probability, and UPP
cc

only

requires an error that beats the random guess, PP
cc

corresponds to the natural requirement that

the protocol beats the
1

2
bound by a margin that is quasi-polynomially large. That is, PP

cc

is

the class of communication problems 5= that satisfy ' 1

2
−2
− log

2 (=)( 5=) ≤ log
2(=) for some positive

constant 2. We have the containment BPP
cc ⊆ PP

cc ⊆ UPP
cc

.

It turns out that both UPP( 5 ) and PP( 5 ) have elegant algebraic formulations. Paturi and

Simon [22] proved that UPP essentially coincides with the sign-rank of 5 :

log rk±( 5 ) ≤ UPP( 5 ) ≤ log rk±( 5 ) + 2.

Similarly to the way that sign-rank captures the complexity measure UPP( 5 ), discrepancy
captures PP( 5 ). The classical result relating randomized communication complexity and

discrepancy, due to Chor and Goldreich [11], is the inequality

'&( 5 ) ≥ log

1 − 2&

Disc( 5 ) .

This in particular implies PP( 5 ) ≥ − log Disc( 5 ). Klauck [17] showed that the opposite is also

true; more precisely, that

PP( 5 ) = $
(
− log Disc( 5 ) + log(=)

)
.

Thus, a direct corollary of Theorem 1.4 is the following separation between unbounded-error

and weakly bounded-error communication complexity.

Corollary 1.7. There exists a function 5 : {0, 1}= × {0, 1}= → {−1, 1} with UPP( 5 ) = $(1) and
PP( 5 ) = Ω(=).

1.3 Implications regarding approximate rank

Another closely related notion to sign-rank is approximate rank. Given  > 1, the -approximate

rank of a boolean matrix � is the minimal rank of a real matrix �, of the same dimensions

as �, that satisfies 1 ≤ �8 , 9�8 , 9 ≤  for all 8 , 9. The -approximate rank of a boolean function

5 : {0, 1}= × {0, 1}= → {−1, 1} is the -approximate rank of the associated 2
= × 2

=
boolean

matrix. Observe that

rk±( 5 ) = lim

→∞
rk( 5 ).

Given this, a natural question is whether sign-rank can be separated from -approximate rank.

This is also a consequence of Theorem 1.4.
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Corollary 1.8. There exists a function 5 : {0, 1}= × {0, 1}= → {−1, 1} with rk±( 5 ) = 3 and
rk( 5 ) = Ω(2=/4/(=)2) for any  > 1.

Corollary 1.8 follows from Theorem 1.4 and the fact that

rk( 5 ) ≥ Ω
(
−2

Disc( 5 )−2

)
,

which is established in [15, Equation (1)].

1.4 Related work

The question of separating sign-rank from discrepancy (or equivalently, separating unbounded-

error from weakly-unbounded-error communication complexity) has been studied in a number

of papers.

When Babai et al. [2] introduced the complexity classes BPP
cc ⊆ PP

cc ⊆ UPP
cc

, they noticed

that the set-disjointness problem separates BPP
cc

from PP
cc

, but they left open the question of

separatingUPP
cc

from PP
cc

, or equivalently sign-rank from discrepancy. This question remained

unanswered for more than two decades until finally Buhrman et al. [7] and independently

Sherstov [24] showed that there are =-bit boolean functions 5 such that UPP( 5 ) = $(log =) but
PP( 5 ) = Ω(=1/3) and PP( 5 ) = Ω(

√
=), respectively. The bounds on PP( 5 ) were strengthened

in subsequent work [25–28] with the final recent separation from [27] giving a function 5

with UPP( 5 ) = $(log =) and maximal possible PP( 5 ) = Ω(=). Despite this line of work, no

improvement wasmade on the$(log(=)) bound on UPP( 5 ). In fact, to the best of our knowledge,

prior to this work, it was not even known whether there are functions with UPP( 5 ) = $(1)
and '

1/3( 5 ) = $(log(=)). To recall, Corollary 1.7 gives a function 5 with UPP( 5 ) = $(1) and
PP( 5 ) = Ω(=).

A different aspect is the study of sign-rank of matrices. Matrices of sign-rank 1 and 2 are

simple combinatorially, while matrices with sign-rank 3 seem to be much more complex. First,

it turns out that deciding whether a matrix has sign-rank 3 is NP-hard, a result that was shown

by Basri et al. [4] and independently by Bhangale and Kopparty [5]. In fact, deciding if a matrix

has sign-rank 3 is ∃ℝ-complete, where ∃ℝ is the existential first-order theory of the reals, a

complexity class lying between NP and PSPACE. This ∃ℝ-completeness result is implicit in

both [4] and [5], as observed by [1].

1.5 Proof overview

We give an overview of the proof of Theorem 1.4. Let us first slightly modify 5 in a way that

will be convenient for the proof.

Let # ≈ 2
=/4

. Alice gets three integers G1 , G2 , I and Bob gets two integers H1 , H2, where

G1 , G2 , H1 , H2 ∈ [#] and I ∈ [−3#2 , 3#2]. We shorthand G = (G1; G2) and H = (H1; H2), so that

Alice’s input is (G; I) and Bob’s input is H. Note that G, H ∈ [#]2. Define

5 ([G, I], H) = sign(I − 〈G, H〉) = sign(I − G1H1 − G2H2).

The following is our main technical result.
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Theorem 1.9 (Main result; technical version). Let 5 be as above. Then Disc( 5 ) = $(= · 2−=/8).

We remark that the function 5 here is a restriction of the function 5 described after

Theorem 1.4, and therefore, Theorem 1.9 implies Theorem 1.4.

To prove Theorem 1.9, it is useful to think about our discrepancy bound in the language

of communication complexity. We prove Theorem 1.9 in two steps. Below we denote random

variables with bold letters.

Step 1: constructing a hard distribution First, we define a hard distribution �. Alice and

Bob receive uniformly random integers x, y ∈ [#]2 respectively where # ≈ 2
=/4

. The inner

product 〈x, y〉 is a random variable over [2#2]. Alice also receives another random variable

z over [−3#2 , 3#2], whose distribution we will explain shortly. The players want to decide

whether 〈x, y〉 ≥ z. We define z in such a way that

• 〈x, y〉 − z ∈ [−2#, 2#),

• 〈x, y〉 ≥ z happens with probability
1

2
,

• The distribution of z conditioned on 〈x, y〉 ≥ z is extremely close in total variation distance

to the distribution of z conditioned on 〈x, y〉 < z, even when restricted to arbitrary large

combinatorial rectangles. This is formalized in Lemma 4.1 and calculations preceding it.

See step 2 bellow for more discussion.

To construct z, we first define another independent random variable k and then let z = 〈x, y〉 +k,
or z = 〈x, y〉 + k − 2# , with equal probabilities. We choose k = k1 + k2 for k1 , k2 independent

uniform elements from [#] so that k is smooth enough for the analysis to go through. Note that

the range of z is really just [−2#, 2#2 + 2#], and we picked the range of I in the definition of 5

as I ∈ [−3#2 , 3#2] for its simpler shape.

Step 2: translation invariance of 〈x, y〉 + k We bound the discrepancy Disc�( 5 ) as follows. Fix

a combinatorial rectangle � × � ⊂ ([#]2 × [−3#2 , 3#2]) × [#]2. We bound the correlation of 5

with 1�1� under the distribution �. In other words, we show under the distribution �, restricted
to the rectangle � × �, we have �( 5 −1(1)) ≈ �( 5 −1(−1)). This boils down to showing that after

conditioning on the input being in � × �, the distribution of (〈x, y〉 + k)|�,� has small total

variation distance with (〈x, y〉 + k − 2#)|�,�. We prove a stronger statement, and show that in

fact this is true even if we fix x = G to a typical G (and therefore choosing � ⊂ {G}× [−3#2 , 3#2]),
namely, after conditioning x = G, and y ∈ �, the distribution of (〈x, y〉 + k)|y∈� has small total

variation distance with its translation by 2# . To prove the claim we appeal to Fourier analysis

and estimate the Fourier coefficients of the random variable, and verify that the only potentially

large Fourier coefficients correspond to Fourier characters that are almost invariant under

translations by 2# . Computing these Fourier coefficients involves computing some partial

exponential sums whose details may be seen in Lemma 4.3 and Lemma 4.4. At a high level,

these boil down to showing that if x, y ∈ ℤ2

? are two random independent variables, uniform

over large sets, then their inner product 〈x, y〉 has well-behaved spectral properties.
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Paper organization. We give preliminary definitions needed for the proof in Section 2. We

discuss the structure of matrices of sign-rank 1 and 2 in Section 3. We prove our main result,

Theorem 1.9, in Section 4.

2 Preliminaries

Notation. To simplify the presentation, we often use . or ≈ instead of the big-$ notation.

That is, G . H means G = $(H), and G ≈ H means G = Θ(H). For integers # ≤ " we denote

[#, "] = {#, . . . , "}, and we shorthand [#] = [1, #].

Discrepancy. Let X ,Y be finite sets, and � be a probability distribution on X × Y. The

discrepancy of a function 5 : X ×Y → {−1, 1} with respect to � and a combinatorial rectangle

� × � ⊆ X ×Y is defined as

Disc
�×�
� ( 5 ) = E(x,y)∼� [ 5 (x, y)1�(x)1�(y)] .

The discrepancy of 5 with respect to � is defined as

Disc�( 5 ) = max

�,�
Disc

�×�
� ( 5 ),

and finally the discrepancy of 5 is defined as

Disc( 5 ) = min

�
Disc�( 5 ).

Probability. We denote random variables with bold letters. Given a random variable r, let
� = �r denote its distribution. The conditional distribution of r, conditioned on r ∈ ( for some

set (, is denoted by �|(. Given a finite set (, we denote the uniform measure on ( by �(. If r is
uniformly sampled from (, we denote it by r ∼ (.

Fourier analysis. The proof of Theorem 1.9 is based on Fourier analysis over cyclic groups.

Next we introduce the relevant notation. Let ? be a prime. For 5 , , : ℤ? → ℂ define

〈 5 , ,〉 = 1

?

∑
G∈ℤ?

5 (G),(G),

and

5 ∗ ,(I) = 1

?

∑
G∈ℤ?

5 (G),(I − G).

Let e? : ℤ? → ℂ denote the function e? : G ↦→ e
2�8G/?

. For 0 ∈ ℤ? define the character

"0 : G ↦→ e?(−0G). The Fourier expansion of 5 : ℤ? → ℂ is the sum

5 (G) =
∑
0∈ℤ?

5̂ (0)"0(G),
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where 5̂ (0) = 〈 5 , "0〉. Note that by definition,

5̂ (0) = 1

?

∑
G∈ℤ?

5 (G)e?(0G).

It follows from the properties of the characters that

5 ∗ ,(I) =
∑
0∈ℤ?

5̂ (0),̂(0)"0(I),

showing that
�5 ∗ ,(0) = 5̂ (0),̂(0). In particular, if x1 , . . . , x: are independent random variables

taking values in ℤ? , and if x = x1 + . . . + x: , then

�̂x(0) = ?:−1

:∏
8=1

�̂x8 (0).

Number theory estimates. Fix a prime ?. Given an integer G, we denote the distance of G to

the closest multiple of ? (and abusing standard notation) by

‖G‖? = min{|G − I? | : I ∈ ℤ}.

We will often use the estimate

|e?(G) − 1| ≈
‖G‖?
?

,

which follows from the easy estimate that 4|H | ≤ |e2�8H − 1| ≤ 8|H | for H ∈ [−1/2, 1/2], and taking

H =
sign(G)‖G‖?

? .

3 Sign-rank 1 and 2

In this section we demonstrate that boolean matrices with sign-rank 1 or 2 are very simple

combinatorially. Let � be an # × # boolean matrix for # = 2
=
. If � has sign-rank 1, then there

exist nonzero numbers 01 , . . . , 0# , 11 , . . . , 1# ∈ ℝ such that �8 , 9 = sign(081 9). In particular, if we

partition the 08 and the 1 9 to the positive and negative numbers, we see that � can be partitioned

into 4 monochromatic submatrices. This implies that Disc(�) = Ω(1).
Assume next that � has sign-rank 2. Then there exist vectors D1 , . . . , D# , E1 , . . . , E# ∈ ℝ2

such that �8 , 9 = sign(〈D8 , E 9〉). By applying a rotation to the vectors, we may assume that their

coordinates are all nonzero. Next, by scaling the vectors, we may assume that D8 = (±1, 08) and
E 9 = (1 9 ,±1) for all 8 , 9. Next, partition the 08 and the 1 9 to the positive and negative numbers.

Consider without loss of generality the submatrix in which D8 = (−1, 08) and E 9 = (1 9 , 1) for all
8 , 9 (the other three cases are equivalent). In this submatrix, �8 , 9 = sign(08 − 1 9). By removing

repeated rows and columns, we get that the submatrix is an upper triangular matrix, with 1
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on or above the diagonal and −1 below the diagonal. That is, the submatrix is equivalent to

the matrix corresponding to the Greater-Than boolean function on at most = bits. Nisan [21]

showed that the bounded-error communication complexity of this matrix is $(log =), which in

particular implies that the discrepancy is at least =−$(1). This implies that also Disc(�) ≥ =−$(1).

4 Sign-rank 3 vs. discrepancy

We now turn to proving Theorem 1.9. To recall, Alice’s input is the pair (G; I) with G ∈ [#]2 , I ∈
[−3#2 , 3#2], and Bob’s input is H ∈ [#]2. The hard distribution � is defined as follows. First,

sample x, y uniformly and independently from [#]2. Next, sample k1 , k2 ∈ [#] uniformly and

independently, and let k = k1+k2. Define z as follows: choose z = 〈x, y〉+k or z = 〈x, y〉+k−2# ,

each with probability 1/2. Observe that in the former case 〈x, y〉 < z and hence 5 ((G; I), y) = 1;

and in the latter case 〈x, y〉 ≥ z and hence 5 ([x, z], y) = −1. Thus 5 is balanced:

Pr[ 5 ((G; I), y) = 1] = Pr[ 5 ((G; I), y) = −1] = 1/2.

In order to prove the theorem, we bound the correlation of 5 with a rectangle � × �, where

� ⊆ [#]2 × [−3#2 , 3#2] and � ⊆ [#]2. For G ∈ [#]2, let

�G = {I : [G, I] ∈ �}.

We have

Disc
�×�
� ( 5 ) = E([x,z],y)∼� [ 5 ([x, z], y)1�(x, z)1�(y)]

= Ex,y∼[#]2 1�(y)Ez|x,y [ 5 ([x, z], y)1�x(z)] .

Recall the definition of 5 and that z = 〈x, y〉 + k or z = 〈x, y〉 + k − 2# with equal probabilities.

In the former case 5 evaluates to 1, and it the latter case it evaluates to −1. We thus have

Disc
�×�
� ( 5 ) =

1

2

Ex,y,k [ 5 ([x, 〈x, y〉 + k], y)1�(y)1�x(〈x, y〉 + k)]

+1

2

Ex,y,k [ 5 ([x, 〈x, y〉 + k − 2#], y))1�(y)1�x(〈x, y〉 + k − 2#)]

=
1

2

Ex,y,k [1�(y)1�x(〈x, y〉 + k) − 1�(y)1�x(〈x, y〉 + k − 2#)]

=
|�|

2#2

Ex Ey∼� Ek [1�x(〈x, y〉 + k) − 1�x(〈x, y〉 + k − 2#)] .

For G ∈ [#]2 let ��G denote the distribution of 〈x, y〉 + k conditioned on x = G, y ∈ �. With this
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notation,

Disc
�×�
� ( 5 ) =

|�|
2#2

Ex Ew∼��x [1�x(w) − 1�x(w − 2#)]

=
|�|

2#2

Ex
∑
F∈ℤ

1�x(F)��x (F) − 1�x(F − 2#)��x (F)

=
|�|

2#2

Ex
∑
F∈ℤ

1�x(F)��x (F) − 1�x(F)��x (F + 2#)

≤ |�|
2#2

Ex
∑
F∈ℤ

����x (F) − ��x (F + 2#)
�� ,

which no longer depends on �. The random variable 〈x, y〉 + k is in the range [−3#2 , 3#2]
so we embed [−3#2 , 3#2] into ℤ? for some prime ? ∈ [6#2 + 1, 12#2]. We consider ��G as a

distribution over ℤ? , and thus we can rewrite

Disc
�×�
� ( 5 ) ≤ ? |�|

2#2

Ex Ew∼ℤ? |��x (w) − ��x (w + 2#)|

. |�| · Ex Ew∼ℤ? |��x (w) − ��x (w + 2#)|.

The following lemma, whose proof is deferred to the next section, completes the proof.

Lemma 4.1. For all #̃ such that #̃ ≈ # ,

Ex Ew∼ℤ? |��x (w) − ��x (w + #̃)| .
log#√
|�|#3

.

By invoking Lemma 4.1 for #̃ = 2# we obtain

Disc( 5 ) ≤ Disc
�×�
� ( 5 ) . |�|

log#√
|�|#3

≤
√
|�|
#3

log# ≤ #− 1

2 log# . =2
−=/8.

4.1 Invariance of ��x under translation

The goal of this section is to prove Lemma 4.1. We will prove that for a typical G, the measure

��G is almost invariant under the translations by #̃ ≈ # . First we compute the Fourier expansion

of this measure.

Lemma 4.2. For all G ∈ [#]2 and 0 ∈ ℤ? , we have

�̂�G (0) =
1

?
e?(20)

(
1

#

e?(#0) − 1

e?(0) − 1

)
2

Ey∼�
[
e?(0〈G, y〉)

]
.
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Proof. Recall that ��G is the distribution of 〈G, y〉+k1+k2 where y ∼ � and k1 , k2 ∼ [#]. Therefore
for all 0 ∈ ℤ? ,

�̂�G (0) = ?2 ��〈G,y〉(0)�̂k1
(0)�̂k2

(0) = ?2 ��〈G,y〉(0)�̂[#](0)2 ,
where to recall �[#] is the uniform distribution on [#]. First, we compute the Fourier coefficients

of �〈G,y〉: ��〈G,y〉(0) = 1

?

∑
C∈ℤ?

�〈G,y〉(C)e?(0C) =
1

?
Ey∼�

[
e?(0〈G, H〉)

]
.

Next, we compute the Fourier coefficients of �[#]:

�̂[#](0) =
1

?

#∑
C=1

1

#
e?(0C) =

e?(0)
?#
·

e?(#0) − 1

e?(0) − 1

,

where we have computed the partial sum of the geometric series {e?(0C)}C=1,...,# . The lemma

follows. �

With the Fourier coefficients �̂�G (0) computed in Lemma 4.2, we can analyze the distance

from ��x to its translation by #̃ ≈ # .

Proof of Lemma 4.1. Let w ∼ ℤ? . Recall that x ∼ [#]2 and that #̃ ≈ # . Using the Fourier

expansion of ��x we can write

B := Ex,w |��x (w) − ��x (w + #̃)| = Ex,w

������∑0∈ℤ?

�̂�x (0)
(
"0(w) − "0(w + #̃)

)������ .
We may now use Lemma 4.2 and substitute the Fourier coefficient �̂�x (0),

B =
1

?
Ex,w

������∑0∈ℤ?

4?(20)
(

1

#

e?(#0) − 1

e?(0) − 1

)
2

Ey∼�
[
e?(0〈x, y〉)

]
(1 − e?(−#̃ 0))"0(w)

������ .
Squaring both sides, and applying Cauchy–Schwarz and then Parseval’s identity, we get

B2?2 ≤ Ex,w

������∑0∈ℤ?

e?(20)Ey∼�
[
e?(0〈x, y〉)

] (
1

#

e?(#0) − 1

e?(0) − 1

)
2

(1 − e?(−#̃ 0))"0(w)

������
2

= Ex
∑
0∈ℤ?

��Ey∼�
[
e?(0〈x, y〉)

] ��2 ���� 1

#

e?(#0) − 1

e?(0) − 1

����4 |1 − e?(−#̃ 0)|2

=
∑
0∈ℤ?

(
Ex

��Ey∼�
[
e?(0〈x, y〉)

] ��2) ���� 1

#

e?(#0) − 1

e?(0) − 1

����4 |1 − e?(#̃ 0)|2.
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Recalling that ? ≈ #2
, note that for 0 ≠ 0 it holds that���� 1

#

e?(#0) − 1

e?(0) − 1

���� ≈ ‖#0‖?# ‖0‖?
. min

(
1,

#

‖0‖?

)
and

|e?(#̃ 0) − 1| ≈

#̃ 0
?

?
. min

(
1,
‖0‖?
#

)
,

both of which follow from trivial upper bounds ‖#0‖? ≤ # ‖0‖? and ‖G‖? ≤ ? ≈ #2
. Let us

denote �0(�) := Ex
��Ey∼�

[
e?(0〈x, y〉)

] ��2
. We break the sum into two parts and for each part use

a different estimate for �0(�) using Lemma 4.3 below.

B2 .
1

?2

∑
‖0‖?<#

�0(�)|e?(#̃ 0) − 1|2 + 1

?2

∑
‖0‖?≥#

�0(�)
���� 1

#

e?(#0) − 1

e?(0) − 1

����4
.

1

?2

∑
‖0‖?<#

�0(�)
(
‖0‖?
#

)
2

+ 1

?2

∑
‖0‖?≥#

�0(�)
(
#

‖0‖?

)
4

.
1

?2

∑
‖0‖?<#

#2

‖0‖2?
·

log
2 #

|�|

(
‖0‖?
#

)
2

+ 1

?2

∑
‖0‖?≥#

‖0‖2?
#2

·
log

2 #

|�|

(
#

‖0‖?

)
4

.
log

2 #

#2 |�|
©«

∑
‖0‖?<#

1

#2

+
∑
‖0‖?≥#

1

‖0‖2?
ª®¬

.
log

2 #

#2 |�|

(
# · 1

#2

+
∑
C≥#

1

C2

)
.

log
2 #

#2 |�|
1

#
=

log
2 #

|�|#3

.

�

4.2 Uniformity of product sets over ℤ?

Recall that �0(�) := Ex∼[#]2
��Ey∼� ["0(〈x, y〉)]

��2
. The following lemma provides estimates for it.

Lemma 4.3. �0(�) . max

(
‖0‖2?
#2

, #2

‖0‖2?

)
· log

2 #

|�| .
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Proof. We have

�0(�) =
1

|�|2 Ex∼[#]2

������∑H∈� "0(〈x, H〉)
������
2

=
1

|�|2
∑

H′,H′′∈�
Ex∼[#]2 "0(〈x, H′ − H′′〉)

≤ 1

|�|2
∑

H′,H′′∈�

��Ex∼[#]2 "0(〈x, H′ − H′′〉)
�� .

Let � − � = {H′ − H′′ : H′, H′′ ∈ �} ⊂ ℤ2

? . Any element H ∈ � − � can be expressed as H = H′ − H′′
for H′, H′′ ∈ � in at most |�| ways. Thus we can bound

�0(�) ≤
1

|�|
∑
H∈�−�

��Ex∼[#]2 "0(〈x, H〉)
�� .

Since � − � ⊆ [#]2 − [#]2 ⊆ [−#, #]2, we can simplify the above to

�0(�) ≤
1

#2 |�|
∑

H∈[−#,#]2

������ ∑
G∈[#]2

"0(〈G, H〉)

������
=

1

#2 |�|
∑

H1 ,H2∈[−#,#]

������ ∑
G1 ,G2∈[#]

"0(G1H1) · "0(G2H2)

������
=

1

#2 |�|
∑

H1 ,H2∈[−#,#]

������ ∑
G1∈[#]

"0(G1H1)

������
������ ∑
G2∈[#]

"0(G2H2)

������
=

1

#2 |�|
©«

∑
H∈[−#,#]

������ ∑G∈[#] "0(GH)
������ª®¬

2

.
1

#2 |�|
©«

∑
H∈[0,#]

������ ∑G∈[#] "0(GH)
������ª®¬

2

.

Note that for a fixed H ≠ 0,

∑
G∈[#] "0(GH) is a partial sum of a geometric series which satisfies��∑

G∈[#] "0(GH)
�� = ���e?(#0H)−1

e?(0H)−1

���, and hence

∑
H∈[0,#]

������ ∑G∈[#] "0(GH)
������ ≤ # + ∑

H∈[#]

����e?(#0H) − 1

e?(0H) − 1

���� . # + ∑
H∈[#]

‖#0H‖?
‖0H‖?

.

Invoking Lemma 4.4 below finishes the proof. �
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Lemma 4.4. Let ? ≥ #2 be prime and let 0 ∈ ℤ? \ {0}. Then

∑
H∈[#]

‖#0H‖?
‖0H‖?

.
? log ?

min(#, ‖0‖?)
.

We need the following simple claim in the proof of Lemma 4.4.

Claim 4.5. Let r be a random variable which takes values in [ ]. Let , : [ ] → ℝ. Then

Er ,(r) = ,( ) +
 −1∑
8=1

(,(8) − ,(8 + 1))Pr[r ≤ 8] .

Proof.

Er ,(r) =
 ∑
8=1

,(8)Pr[r = 8]

=

 ∑
8=1

,(8) (Pr[r ≤ 8] − Pr[r ≤ 8 − 1])

= ,( ) +
 −1∑
8=1

(,(8) − ,(8 + 1))Pr[r ≤ 8] . �

Proof of Lemma 4.4. We separate the proof to two cases of ‖0‖? < # and ‖0‖? ≥ # . Consider an

integer : with ‖0‖? ≤ : ≤ ?. We start by estimating the size of the set

(: = {H ∈ [#] : ‖H0‖? ≤ :}.

Note that if H ∈ (: , then H0 ∈ ?ℎ + [−:, :] for some integer ℎ ≥ 0. Since H ∈ [#], we have

ℎ ≤ # ‖0‖?+:
? , and hence there are at most

# ‖0‖?
? + 1 such values of ℎ. Fixing ℎ, we have

H ∈ ?ℎ

‖0‖?
+ [−:/‖0‖? , :/‖0‖?], and there are at most

2:
‖0‖?
+ 1 ≤ 3:

‖0‖?
such values of H. We

conclude that

|(: | ≤
(
# ‖0‖?
?
+ 1

)
× 3:

‖0‖?
≤ 3#:

?
+ 3:

‖0‖?
.
:

#
+ :

‖0‖?
.

Note that this bound obviously holds also for : ≥ ?.
Now to compute

∑
H∈[#]

‖#0H‖?
‖0H‖?

we separate to two cases depending on whether ‖0‖? ≥ #
or not, and then use Claim 4.5.
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The case ‖0‖? ≥ # : First, note that in this case we can bound |(: | . :
# . Also to bound

‖#0H‖?
‖0H‖?

,

for H ∈ (‖0‖? , we use the bound ‖#0H‖? ≤ ?. We get

∑
H∈[#]

‖#0H‖?
‖0H‖?

≤ ?
∑
H∈[#]

1

‖0H‖?
.

To compute

∑
H∈[#]

1

‖0H‖?
we use Claim 4.5. Let u ∼ [#] be uniformly chosen, and set the random

variable r to be r = ‖0u‖? . Set ,(G) = 1

G . Then we have

1

#

∑
H∈[#]

1

‖0H‖?
= Er ,(r)

= ,(?) +
?−1∑
8=1

(,(8) − ,(8 + 1))Pr[r ≤ 8]

=
1

?
+
?−1∑
8=1

(
1

8
− 1

8 + 1

)
|(8 |
#

.
1

?
+
?−1∑
8=1

1

82
· 8
#2

.
log ?

#2

.

Overall we get

∑
H∈[#]

‖#0H‖?
‖0H‖?

≤ ?
∑
H∈[#]

1

‖0H‖?
.
? log ?

#
.
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The case ‖0‖? < # : Here we use the estimate |(: | . :
‖0‖?

. Also similar to the previous case,

we bound

‖#0H‖?
‖0H‖?

≤ ?

‖0H‖?
. We get

1

#

∑
H∈[#]

1

‖0H‖?
= ,(?) +

?−1∑
8=1

(,(8) − ,(8 + 1))Pr[r ≤ 8]

=
1

?
+
?−1∑
8=1

(
1

8
− 1

8 + 1

)
|(8 |
#

.
1

?
+
?−1∑
8=1

1

82
· 8

‖0‖? #

.
log ?

‖0‖? #
.

So we have ∑
H∈[#]

‖#0H‖?
‖0H‖?

≤ ?
∑
H∈[#]

1

‖0H‖?

.
? log ?

‖0‖?
.

The lemma follows. �

We remark that the following more general statement regarding uniformity of product sets

follows by an argument similar to the proof of Lemma 4.3 which we record here as it may be of

independent interest.

Lemma 4.6. Let ? ≥ #2 be prime, and let � ⊆ [#]3 for some positive integer 3. Then

Ex∼[#]3 | Ey∼� "0(〈x, y〉)|2 . max

(
‖0‖3? ,

?3

‖0‖3?

)
·

log
3 ?

|�|#3
.
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