
THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49
www.theoryofcomputing.org

Span Programs and Quantum Space

Complexity

Stacey Jeffery
∗

Received October 7, 2020; Revised November 3, 2021; Published May 24, 2022

Abstract. While quantum computers hold the promise of significant computational

speedups, the limited size of early quantum machines motivates the study of

space-bounded quantum computation. We relate the quantum space complexity of

computing a function 5 with one-sided error to the logarithm of its span program size
over the reals, a classical quantity that is well-studied in attempts to prove formula

size lower bounds.

In themore natural bounded errormodel, we show that the amount of space needed

for a unitary quantum algorithm (i. e., an algorithm that makes no measurements

until the final step) to compute 5 with bounded (two-sided) error is at least the

logarithm of its approximate span program size. Approximate span programs have been

introduced in the field of quantum algorithms but not studied classically. However,

the approximate span program size of a function is a natural generalization of its

span program size.

A conference version of this paper appeared in the Proceedings of the 11th Innovations in Theoretical Computer

Science Conference, 2020 [17].

∗
Supported by an NWO WISE Fellowship, an NWO Veni Innovational Research Grant under project number

639.021.752, and QuantERA project QuantAlgo 680-91-03. SJ is a CIFAR Fellow in the Quantum Information Science

Program.

ACM Classification: F.1.1, F.1.3

AMS Classification: 81P68

Key words and phrases: quantum computing, quantum space complexity, span programs

© 2022 Stacey Jeffery
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2022.v018.a011

http://dx.doi.org/10.4086/toc
http://doi.org/10.4230/LIPIcs.ITCS.2020.4
http://doi.org/10.4230/LIPIcs.ITCS.2020.4
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2022.v018.a011

STACEY JEFFERY

While no non-trivial lower bound is known on the span program size (or

approximate span program size) of any explicit function, a number of lower bounds

are known on the monotone span program size. We show that the approximate

monotone span program size of 5 is a lower bound on the space needed by quantum

algorithms of a particular form, calledmonotone phase estimation algorithms, to compute

5 . We then give the first non-trivial lower bound on the approximate monotone span

program size of an explicit function.

1 Introduction

While quantum computers hold the promise of significant speedups for a number of problems,

building them is a serious technological challenge, and it is expected that early quantum

computers will have quantum memories of very limited size. This motivates the theoretical

question: what problems could we solve faster on a quantum computer with limited space?

Or similarly, what is the minimum number of qubits needed to solve a given problem (and

hopefully still get a speedup)?

We take a modest step towards answering such questions, by relating the space complexity

of a function 5 to its span program size (see Definition 3.3), which is a measure that has received

significant attention in theoretical computer science over the past few decades. Span programs

are a model of computation introduced by Karchmer and Wigderson [20] in an entirely classical

setting; they defined the span program size of a function in order to lower bound the size of

counting branching programs. Some time later, Reichardt and Špalek [28] related span programs

to quantum algorithms, and introduced the new measure of span program complexity (see

Definition 3.4). The importance of span programs in quantum algorithms stems from the ability

to compile any span program for a function 5 into a bounded error quantum algorithm for 5

[27]. In particular, there is a tight correspondence between the span program complexity of 5 ,
and its quantum query complexity—a rather surprising and beautiful connection for a model

originally introduced outside the realm of quantum computing. In contrast, the classical notion

of span program size had received no attention in the quantum computing literature before now.

Ref. [15] defined the notion of an approximate span program for a function 5 , and showed

that even an approximate span program for 5 can be compiled into a bounded error quantum

algorithm for 5 . In this paper, we further relax the definition of an approximate span program

for 5 , making analysis of such algorithms significantly easier (see Definition 3.6).

Let S* (5) denote the bounded error unitary space complexity of 5 , or the minimum space needed

by a unitary quantum algorithm—i. e., an algorithm that makes no measurements until the final

step—that computes 5 with bounded error (see Definition 2.3). In [10] and [12], independently,

it was shown that S* (5) = S(5) (up to constants), where S(5) denotes the bounded error space
complexity of 5 , without the restriction to algorithms that are unitary. Our results are proven for

S* (5), but the results of [10, 12] imply that they also apply to S(5). A similar statement is not

known for the one-sided error unitary quantum space complexity, S1

*
(5), though we suspect that

it also holds, and a proof of this would strengthen our results about S1

*
(5) to also hold for S1(5).

For a function 5 : {0, 1}= → {0, 1}, we can assume that the input is accessed by queries, so

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 2

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

that we do not need to store the full =-bit input in working memory, but we need at least log =

bits of memory to store an index into the input. Thus, a lower bound of $(log =) on S(5) for
some 5 would be considered non-trivial.

Letting SP(5) denote the minimum size of a span program deciding 5 , and S̃P(5) the
minimum size of a span program approximating 5 (see Definition 3.7), we have the following

(see Theorem 4.1):

Theorem 1.1 (Informal). For any Boolean function 5 , if S(5) denotes its bounded error quantum space
complexity, and S̃P(5) its approximate span program size, then

S(5) ≥ log S̃P(5).

Similarly, if S1

*
(5) denotes its one-sided error unitary space complexity, and SP(5) its span program size,

then
S1

* (5) ≥ log SP(5).

In the case of bounded (two-sided) error, this lower bound is tight in the following sense

(corollary of Theorem 3.1 and 3.2):

Theorem 1.2 (Informal). The class of languages decidable in bounded error by a quantum algorithm
with space $(() and 2

$(() queries1 is equal to the class of languages approximated by a span program of
size and complexity 2

$(().

The relationship between span program size and quantum space complexity is rather natural,

as the span program size of 5 is known to lower bound the minimum size of a symmetric

branching program for 5 , and the logarithm of the branching program size of a function 5

characterizes its classical deterministic space complexity.

The inequality S1

*
(5) ≥ log SP(5) in Theorem 1.1 follows from a construction of [27] for

converting a one-sided error quantum algorithm for 5 into a span program for 5 . We adapt this

construction to show how to convert a bounded (two-sided) error unitary quantum algorithm

for 5 with query complexity) and space complexity (≥ log) into an approximate span

program for 5 with complexity Θ()) and size 2
Θ(()

, proving S* (5) ≥ Ω(log S̃P(5)), and thus

S(5) ≥ Ω(log S̃P(5)). The connection between S(5) and log S̃P(5) is tight up to an additive term

of the logarithm of the minimum complexity of any span program for 5 with optimal size,

yielding Theorem 1.2. This follows from the fact that an approximate span program can be

compiled into a quantumalgorithm in away that similarly preserves the correspondence between

space complexity and (logarithm of) span program size, as well as the correspondence between

query complexity and span program complexity (see Theorem 3.1). While the preservation of

1Depending on the precise model of computation, it is without loss of generality to assume that the space is at

least logarithmic in the number of queries. In our model of unitary quantum algorithms (see Section 2), this is a

reasonable assumption since we would need to use a counter of size at least logarithmic in the query complexity to

know which unitary to apply. In the case of a quantum Turing machine that halts absolutely, if there is ever a pair of

time steps C ≠ C′ such that the state of the machine at step C and the state at step C′ are non-orthogonal, then some

(exponentially decreasing) branch of the computation will run forever, which is a contradiction.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 3

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

the correspondence between query complexity and span program complexity (in both directions)

is not necessary for our results, it may be useful in future work for studying lower bounds on

time and space simultaneously.

The significance of Theorem 1.1 is that span program size has received extensive attention in

theoretical computer science. Using results from [5], the connection in Theorem 1.1 immediately

implies the following (Theorem 4.2):

Theorem 1.3. For almost all Boolean functions 5 on = bits, S1

*
(5) = Ω(=).

If we make a uniformity assumption that the quantum space complexity of an algorithm is at

least the logarithm of its time complexity, then Theorem 1.3 would follow from a lower bound of

Ω(2=) on the quantum time complexity of almost all =-bit Boolean functions. Notwithstanding,

the proof via span program size is evidence of the power of the technique.

In the pursuit of lower bounds on span program size of explicit functions, several nice

expressions lower bounding SP(5) have been derived. By adapting one such lower bound on

SP(5) to S̃P(5), we get the following (see Lemma 4.6):

Theorem 1.4 (Informal). For any Boolean function 5 , and partial matrix2 " ∈ (ℝ ∪ {★}) 5 −1(0)× 5 −1(1)

with ‖"‖∞ ≤ 1:

S(5) ≥ Ω
(
log

(
1

2
-rank(")

max8∈[=] rank(" ◦ Δ8)

))
,

where ◦ denotes the entrywise product, and Δ8[G, H] = 1 if G8 ≠ H8 and 0 else.

Above,
1

2
-rank denotes the approximate rank, or the minimum rank of any matrix "̃ such

that |"[G, H] − "̃[G, H]| ≤ 1

2
for each G, H such that "[G, H] ≠ ★. If we replace

1

2
-rank(")with

rank("), we get the logarithm of an expression called the rank measure, introduced by Razborov

[25]. The rank measure was shown by Gàl to be a lower bound on span program size, SP [11],

and thus, our results imply that the log of the rank measure is a lower bound on S1

*
. It is

straightforward to extend this proof to the approximate case to get Theorem 1.4.

Theorem 1.4 seems to give some hope of proving a non-trivial—that is, $(log =)—lower

bound on the quantum space complexity of some explicit 5 , by exhibiting a matrix " for which

the (approximate) rank measure is 2
$(log =)

. In [25], Razborov showed that the rank measure is a

lower bound on the Boolean formula size of 5 , motivating significant attempts to prove lower

bounds on the rank measure of explicit functions. The bad news is, circuit lower bounds have

been described as “Complexity theory’s Waterloo” [4]. Despite significant effort, no non-trivial

lower bound on span program size for any 5 is known.

Due to the difficulty of proving explicit lower bounds on span program size, earlier work has

considered the easier problem of lower bounding monotone span program size, mSP(5). For a
monotone function 5 , the monotone span program size of 5 , mSP(5) is the minimum size of any

monotone span program for 5 (see Definition 5.1). We can similarly define the approximate monotone
span program size of 5 , mS̃P(5) (see Definition 5.1). Although log mS̃P(5) is not a lower bound

2Note that " depends on 5 in that it is indexed by the 0- and 1-inputs of 5 .

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 4

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

on S(5), even for monotone 5 , it is a lower bound on the space complexity of any algorithm

obtained by compiling a monotone span program. We show that such algorithms are equivalent

to a more natural class of algorithms called monotone phase estimation algorithms. Informally, a

phase estimation algorithm is an algorithm that works by performing phase estimation of some

unitary that makes one query to the input, and estimating the amplitude on a 0 in the phase

register (see Definition 5.12). Any quantum algorithm can be put into this form in a way that

preserves its space, query, and even time complexity. A monotone phase estimation algorithm

is a phase estimation algorithm where, loosely speaking, adding 0s to the input can only make

the algorithm more likely to reject (see Definition 5.13). This includes, for example, the phase

estimation variant of Grover’s algorithm. We can then prove the following (see Theorem 5.14):

Theorem 1.5 (Informal). For any Boolean function 5 , any bounded error monotone phase estimation
algorithm for 5 has space complexity at least log mS̃P(5), and any one-sided error monotone phase
estimation algorithm for 5 has space complexity at least log mSP(5).

Fortunately, non-trivial lower bounds for the monotone span program complexity are

known for explicit functions. In Ref. [5], Babai, Gàl and Wigderson showed a lower bound

of mSP(5) ≥ 2
Ω(log

2(=)/log log(=))
for some explicit function 5 , which was later improved to

mSP(5) ≥ 2
Ω(log

2(=))
by Gàl [11]. In Ref. [29], a function 5 was exhibited with mSP(5) ≥ 2

=&

for some constant & ∈ (0, 1), and in the strongest known result, Pitassi and Robere exhibited a

function 5 with mSP(5) ≥ 2
Ω(=)

[24]. Combined with our results, each of these implies a lower

bound on the space complexity of one-sided error monotone phase estimation algorithms. For

example, the result of [24] implies a lower bound of Ω(=) on the space complexity of one-sided

error monotone phase estimation algorithms for a certain satisfiability problem 5 . This lower

bound, and also the one in [29], are proven by choosing 5 based on a constraint satisfaction

problem with high refutation width, which is a measure related to the space complexity of certain

classes of SAT solvers, so it is intuitively not surprising that these problems should require a

large amount of space to solve with one-sided error.

For the case of bounded error space complexity, we also prove the following (see Theorem 5.3,

Corollary 5.15):

Theorem 1.6 (Informal). There exists a function 5 : {0, 1}= → {0, 1} such that any bounded error
monotone phase estimation algorithm for 5 has space complexity (log =)2−>(1).

This lower bound is non-trivial, although much less so than the best known lower bound

of Ω(=) for the one-sided case. The approximate monotone span program lower bound

from which Theorem 1.6 follows also implies a new lower bound of 2
(log =)2−>(1)

on the (non-

approximate) monotone span program size of the function 5 in Theorem 1.6 (although, as

previously mentioned, there are much better lower bounds for monotone span program size of

other explicit functions).

To prove the lower bound in Theorem 1.6, we apply a new technique that leverages the

best possible gap between the certificate complexity and approximate polynomial degree of a

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 5

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

function, employing a function , : {0, 1}<2+>(1) → {0, 1} from [8],3 whose certificate complexity

is <1+>(1)
, and whose approximate degree is <2−>(1)

. Following a strategy of [29], we use this ,
to construct a pattern matrix [30] (see Definition 5.8) and use this matrix in a monotone version

of Theorem 1.4 (see Theorem 5.4). The fact that certificate complexity and approximate degree

of total functions are related by d̃eg
1/3(,) ≤ �(,)2 for all , is a barrier to proving a lower bound

better than (log =)2 using this technique, but we also give a generalization that has the potential

to prove significantly better lower bounds (see Lemma 5.11).

Discussion and open problems The most conspicuous open problem of this work is to prove

a lower bound of $(log =) on S(5) or even S1

*
(5) for some explicit decision function 5 . It is

known that any space (quantum Turing machine can be simulated by a deterministic classical

algorithm in space (2
[31], so a lower bound of $(log

2 =) on classical space complexity would

also give a non-trivial lower bound on quantum space complexity. If anything, the relationship

to span program size is evidence that this task is extremely difficult.

We have shown a lower bound of 2
(log =)2−>(1)

on the approximate monotone span program

complexity of an explicit monotone function 5 , which gives a lower bound of (log =)2−>(1) on
the bounded error space complexity needed by a quantum algorithm of a very specific form: a

monotone phase estimation algorithm. This is much worse than the best bound we can get in

the one-sided case: a lower bound ofΩ(=) for some explicit function. An obvious open problem

is to try to get a better lower bound on the approximate monotone span program complexity of

some explicit function.

Our lower bound of (log =)2−>(1) only applies to the space complexity of monotone phase

estimation algorithms and does not preclude the existence of a more space-efficient algorithm

of a different form for 5 . We do know that phase estimation algorithms are fully general, in

the sense that every function has a space-optimal phase estimation algorithm. Does something

similar hold for monotone functions and monotone phase estimation algorithms? This would

imply that log mS̃P(5) is a lower bound on S(5) for all monotone functions 5 .

In this paper, we define an approximate version of the rank method, and monotone rank

method, and in case of the monotone rank method, give an explicit non-trivial lower bound. The

rank method is known to give lower bounds on formula size, and the monotone rank method

on monotone formula size. An interesting question is whether the approximate rank method

also gives lower bounds on some complexity theoretic quantity related to (classical) formulas.

Our results are a modest first step towards understanding unitary quantum space complexity,

but even if we could lower bound the unitary quantum space complexity of an explicit function,

there are several obstacles limiting the practical consequences of such a result. First, while an

early quantum computer will have a small quantum memory, it is simple to augment it with

a much larger classical memory. Thus, in order to achieve results with practical implications,

we would need to study computational models that make a distinction between quantum and

classical memories. We leave this as an important challenge for future work.

3An earlier version of this paper used a function described in [1] with a 7/6-separation between certificate

complexity and approximate degree. We thank Robin Kothari for pointing us to the improved result of [8].

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 6

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

Second, we are generally only interested in running quantum algorithms when we get an

advantage over classical computers in the time complexity, so results that give a lower bound on

the quantum space required if we wish to keep the time complexity small, such as time-space

lower bounds, are especially interesting. While we do not address time-space lower bounds in

this paper, one advantage of the proposed quantum space lower bound technique, via span

programs, is that span programs are also known to characterize quantum query complexity,

which is a lower bound on time complexity. We leave exploration of this connection for future

work.

We mention two previous characterizations of S(5). Ref. [19] showed that S(5) is equal to
the logarithm of the minimum width of a matchgate circuit computing 5 , and thus our results

imply that this minimum matchgate width is approximately equal to the approximate span

program size of 5 . Separately, in Ref. [9], Fefferman and Lin showed that for every function

:, inverting 2
:(=) × 2

:(=)
matrices is complete for the class of problems 5 such that S(5) ≤ :(=).

Our results imply that evaluating an approximate span program of size 2
:(=)

(for some suitable

definition of the problem) is similarly complete for this class. Evaluating an approximate span

program boils down to deciding if ‖�(G)+ |F0〉‖, for some matrix �(G) partially determined by

the input G, and some initial state |F0〉, is below a certain threshold, so these results are not

unrelated.4 We leave exploring these connections as future work.

Organization The remainder of this paper is organized as follows. In Section 2, we present

the necessary notation and quantum algorithmic preliminaries, and define quantum space

complexity. In Section 3, we define span programs, and describe how they correspond to

quantum algorithms. In particular, we describe how a span program can be “compiled” into

a quantum algorithm (Section 3.2), and how a quantum algorithm can be turned into a span

program (Section 3.3), with both transformations more or less preserving the relationships

between span program size and algorithmic space, and between span program complexity and

query complexity. From this correspondence, we obtain, in Section 4, expressions that lower

bound the quantum space complexity of a function. While we do not know how to instantiate

any of these expressions to get a non-trivial lower bound for an explicit function, in Section 5, we

consider to what extent monotone span program lower bounds are meaningful lower bounds

on variants of quantum space complexity, and give the first non-trivial lower bound on the

approximate monotone span program size of a function.

2 Preliminaries

We begin with some miscellaneous notation. For a vector |E〉, we let ‖|E〉‖ denote its ℓ2-norm. In

the following, let � be a matrix with 8 and 9 indexing its rows and columns. Define:

‖�‖∞ = max

8 , 9
|�8 , 9 |, and ‖�‖ = max{‖�|E〉‖ : ‖|E〉‖ = 1}.

4Here, �(G) = �Π�(G), where � is as in Definition 3.3, |F
0
〉 = �+ |�〉 for |�〉 as in Definition 3.3, and �(G) is as

in Definition 3.4. �(G)+ denotes the pseudo-inverse of �(G). Then one can verify that F+(G) = ‖�(G)+ |F0
〉‖2 (see

Definition 3.4).

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 7

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Following [2], define the �-rank of a matrix � as the minimum rank of any matrix � such that

‖� − �‖∞ ≤ �. For a matrix � with singular value decomposition � =
∑
: �: |E:〉〈D: |, where we

assume ∀:, �: > 0, define:

col(�) = span{|E:〉}: , row(�) = span{|D:〉}: , ker(�) = row(�)⊥ , �+ =
∑
:

1

�:
|D:〉〈E: |.

The following lemma, from [22], is useful in the analysis of quantum algorithms.

Lemma 2.1 (Effective spectral gap lemma). Fix orthogonal projectors Π� and Π�. Let * =

(2Π� − �)(2Π� − �), and let ΠΘ be the orthogonal projector onto the e
8�-eigenspaces of * such that

|� | ≤ Θ. Then if Π� |D〉 = 0, then ‖ΠΘΠ� |D〉‖ ≤ Θ
2
‖|D〉‖.

In general, we will let Π+ denote the orthogonal projector onto + , for a subspace + .

Unitary quantumalgorithms and space complexity A unitary quantum algorithmA = {A=}=∈ℕ
is a family (parametrized by =) of sequences of 2

B(=)
-dimensional unitaries*

(=)
1
, . . . , *

(=)
)(=), for

some B(=) ≥ log = and)(=). (We will generally dispense with the explicit parametrization by =).

For G ∈ {0, 1}= , let OG be the unitary that acts as OG | 9〉 = (−1)G 9 | 9〉 for 9 ∈ [=], and OG |0〉 = |0〉.
We letA(G) denote the random variable obtained from measuring

)OG)−1 . . .OG*1 |0〉

with some two-outcome measurement that should be clear from context. We call)(=) the
query complexity of the algorithm, and ((=) = B(=) + log)(=) the space complexity. By including

a log)(=) term in the space complexity, we are implicitly assuming that the algorithm must

maintain a counter to know which unitary to apply next. This is a fairly mild uniformity

assumption (that is, any uniformly generated algorithm uses Ω(log)) space), and it will make

the statement of our results much simpler. The requirement that B(=) ≥ log = is to ensure that

the algorithm has enough space to store an index 8 ∈ [=] into the input.

Remark 2.2. Since) is the number of queries made by the algorithm, we may be tempted to

assume that it is at most =, however, while every =-bit function can be computed in = queries,

this may not be the case when space is restricted. For example, it is difficult to imagine an

algorithm that uses $(log =) space and >(=3/2) quantum queries to solve the following problem

on [@]= ≡ {0, 1}= log @
: Decide whether there exist distinct 8 , 9 , : ∈ [=] such that G8 + G 9 + G: = 0

mod @.

For a (partial) function 5 : � → {0, 1} for � ⊆ {0, 1}= , we say that A computes 5 with

bounded error if for all G ∈ �, A(G) = 5 (G) with probability at least 2/3. We say that A
computes 5 with one-sided error if in addition, for all G such that 5 (G) = 1,A(G) = 5 (G)with

probability 1.

Definition 2.3 (UnitaryQuantumSpace). For a family of functions 5 : � → {0, 1} for� ⊆ {0, 1}= ,
the unitary space complexity of 5 , S* (5), is the minimum ((=) such that there is a family of

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 8

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

unitary quantum algorithms with space complexity ((=) that computes 5 with bounded error.

Similarly, S1

*
(5) is the minimum ((=) such that there is a family of unitary quantum algorithms

with space complexity ((=) that computes 5 with one-sided error.

In general, quantum algorithms need not be of the strict unitary form described above, as a

quantum computer is not restricted to only measure at the end of the algorithm. If one only cares

about time complexity, then it is without loss of generality to assume that all measurements

happen in the final step of the algorithm, because one can simply set aside any register that

is to be measured, to be used as a “read-only” register (that is, strictly as a control) for the

remainder of the computation. However, it is not obvious that this would not increase the space

complexity, since any register that should have been measured is not available for re-use. It

was recently shown that, in fact, even for space complexity, there is no loss of generality in

considering unitary quantum algorithms [10, 12]; if we let S(5) denote the minimum space

complexity of any quantum algorithm that computes 5 with bounded error, S(5) = S* (5). Thus,
we can restrict our attention to unitary quantum algorithms for the remainder of this article but

all of our results in the bounded error setting also hold for non-unitary algorithms [10, 12]. At

the time of writing, there is no analogous result for S1

*
(5), but we suspect it holds along similar

lines.

Phase estimation For a unitary* acting on � and a state |#〉 ∈ �, we will say we perform)

steps of phase estimation of* on |#〉 when we compute

1√
)

)−1∑
C=0

|C〉* C |#〉,

and then perform a quantum Fourier transform over ℤ/)ℤ on the first register, called the phase
register. This procedure was introduced in [21]. It is easy to see that the complexity (either query

or time) of phase estimation is $()) times the complexity of implementing a controlled call to

* . The space complexity of phase estimation is log) + log dim(�).
Informally: we will use the fact that if * |#〉 = |#〉, then performing) steps of phase

estimation of* on |#〉 and measuring the phase register results in outcome 0 with probability

1; and if * |#〉 = e
8� |#〉 for some � ∈ (−�,�] with |� | > 0, then performing sufficiently large

) = Ω(1/|� |) steps of phase estimation results in outcome 0 with probability bounded by a

constant below 1. Formally: for the results in Section 3.2, we refer to the proof of [15, Lemma

3.2] where formal results about phase estimation are exploited; for the results in Section 5.2,

we prove the specific properties of phase estimation needed for our purposes in Lemma 5.18

and 5.19.

We note that we can increase the success probability to any constant by adding some constant

number : of phase registers, and doing phase estimation : times in parallel, still using a single

register for* , and taking the majority. This still has space complexity log dim� + $(log)).

Amplitude estimation For a unitary * acting on �, a state |#〉 ∈ �, and an orthogonal

projector Π on �, we will say we perform " steps of amplitude estimation of* on |#〉 with respect

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 9

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

to Πwhen we perform " steps of phase estimation of

(2|#〉〈# | − �)†(2Π − �)

on * |#〉, then, if the phase register contains some C ∈ {0, . . . , " − 1}, compute ?̃ = sin
2 �C

2" ,

which is an estimate of ‖Π* |#〉‖2 in a new register. The (time or query) complexity of this is

$(") times the complexity of implementing a controlled call to* , implementing a controlled

call to 2Π − �, and generating |#〉. The space complexity is log) + log dim� + $(1). We have

the following guarantee [7]:

Lemma 2.4. Let ? = ‖Π* |#〉‖2. There exists Δ = Θ(1/") such that when ?̃ is obtained as above from
" steps of amplitude estimation, with probability at least 1/2, |?̃ − ? | ≤ Δ.

Wewill thus also refer to" steps of amplitude estimation as amplitude estimation to precision 1/".

3 Span programs and quantum algorithms

In Section 3.1, we will define a span program, its size and complexity, and what it means for a

span program to approximate a function 5 . In Section 3.2, we will prove the following, which

implies that the first part of Theorem 1.1 is essentially tight.

Theorem 3.1. Let 5 : � → {0, 1} for � ⊆ {0, 1}= , and let % be a span program that �-approximates
5 with size and complexity �, for some constant � ∈ (0, 1). Then there exists a unitary quantum
algorithmA% that decides 5 with bounded error in space (= $(log + log�) using) = $(�) queries
to G.

Finally, in Section 3.3, we prove the following theorem, which implies Theorem 1.1:

Theorem 3.2. Let 5 : � → {0, 1} for � ⊆ {0, 1}= and letA be a unitary quantum algorithm using)
queries, and space (to compute 5 with bounded error. Then for any constant � ∈ (0, 1), there is a span
program %A with size B(%A) ≤ 2

$(() that �-approximates 5 with complexity �� ≤ $()). IfA decides
5 with one-sided error, then %A decides 5 .

A statement similar to Theorem 3.1 for the case of exact (� = 1) span programs5 was proven in

[27]. Later this was generalized to the case of approximate span program [15], but a slightly more

constrained notion of approximation was used, which would not allow us to prove Theorem 3.2.

Neither of these works explicitly mentioned space complexity, although the analysis of the space

complexity follows easily.

Theorem 3.2 is proven by exhibiting a construction that maps a bounded-error quantum

algorithm for 5 to a span program that approximates it. This is based on a similar construction

in [27] that maps a one-sided error quantum algorithm for 5 to a span program that decides

it exactly. Interestingly, the fact that span program complexity is a lower bound on query

complexity was known even without a mapping from bounded-error quantum algorithms to

5See Section 3.1 for definitions of exact and approximate span programs.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 10

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

span programs. This was proven by showing [27] that the semidefinite minimization problem

whose solution is the minimum span program complexity of a span program that decides 5 is

the dual of a semidefinite program that was known to be a lower bound on quantum query

complexity [3, 6, 14].

3.1 Span programs

Span programs were first introduced in the context of classical complexity theory in [20], where

they were used to study counting classes for nondeterministic logspace machines. While span

programs can be defined with respect to any field, we will consider span programs over ℝ (or

equivalently, ℂ, when convenient, see Remark 3.10). We use the following definition, slightly

modified from [20]:

Definition 3.3 (Span Program and Size). A span program on {0, 1}= consists of:

• Finite inner product spaces {�9 ,1} 9∈[=],1∈{0,1} ∪ {�true , �false}. We define � =
⊕

9 ,1 �9 ,1 ⊕
�true ⊕ �false, and for every G ∈ {0, 1}= , �(G) = �1,G1

⊕ · · · ⊕ �=,G= ⊕ �true.6

• A vector space + .

• A target vector |�〉 ∈ + .7

• A linear map � : � → + .

We specify this span program by % = (�,+, |�〉, �), and leave the decomposition of � implicit.

The size of the span program is B(%) = dim�.

To recover the classical definition from [20], we can view � as a matrix, with each of its

columns labelled by some (9 , 1) ∈ [=] × {0, 1} (or “true” or “false”).
Span programs were introduced to the study of quantum query complexity in [28]. In the

context of quantum query complexity, B(%) is no longer the relevant measure of the complexity

of a span program. Instead, [28] introduce the following measures:

Definition 3.4 (Span ProgramComplexity andWitnesses). For a span program % = (�,+, |�〉, �)
on {0, 1}= and input G ∈ {0, 1}= , we say G is accepted by the span program if there exists |F〉 ∈ �(G)
such that �|F〉 = |�〉, and otherwise we say G is rejected by the span program. Let %0 and %1 be

respectively the set of rejected and accepted inputs to %. For G ∈ %1, define the positive witness
complexity of G as:

F+(G, %) = F+(G) = min{‖|F〉‖2 : |F〉 ∈ �(G), �|F〉 = |�〉}.

6We remark that while �true and �
false

may be convenient in constructing a span program, they are not necessary.

We can always consider a partial function 5 ′ defined on (= + 1)-bit strings of the form (G, 1) for G in the domain of 5 ,

as 5 (G), and let �=+1,1 = �true and �=+1,0 = �false
.

7Although + has no meaningful inner product, we use Dirac notation, such as |�〉 and 〈$ | for the sake of our
fellow quantum computing researchers.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 11

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Such a |F〉 is called a positive witness for G. For a domain � ⊆ {0, 1}= , we define the positive
complexity of % (with respect to �) as:

,+(%, �) =,+ = max

G∈%1∩�
F+(G, %).

For G ∈ %0, define the negative witness complexity of G as:

F−(G, %) = F−(G) = min{‖〈$ |�‖2 : 〈$ | ∈ ℒ(+,ℝ), 〈$ |�〉 = 1, 〈$ |�Π�(G) = 0}.

Above, ℒ(+,ℝ) denotes the set of linear functions from + to ℝ. Such an 〈$ | is called a negative
witness for G. We define the negative complexity of % (with respect to �) as:

,−(%, �) =,− = max

G∈%0∩�
F−(G, %).

Finally, we define the complexity of % (with respect to �) by �(%, �) =
√
,+,−.

For 5 : � → {0, 1}, we say a span program % decides 5 if 5 −1(0) ⊆ %0 and 5 −1(1) ⊆ %1.

Definition 3.5. We define the span program size of a function 5 , denoted SP(5), as the minimum

B(%) over families of span programs that decide 5 .

We note that originally, in [20], span program size was defined

B′(%) =
∑
9 ,1

dim(col(�Π�9 ,1
)) =

∑
9 ,1

dim(row(�Π�9 ,1
)).

This could differ from B(%) = dim(�) = ∑
9 ,1 dim(�9 ,1), because dim(�9 ,1)might be much larger

than dim(row(�Π�9 ,1
)). However, if a span program has dim(�9 ,1) > dim(row(�Π�9 ,1

)) for
some 9 , 1, then it is a simple exercise to show that the dimension of dim(�9 ,1) can be reduced

without altering the witness size of any G ∈ {0, 1}= , so the definition of SP(5) is the same as

if we had used B′(%) instead of B(%). In any case, we will not be relying on previous results

about the span program size as a black-box, and will rather prove all required statements, so

this difference has no impact on our results.

While span program size has only previously been relevant outside the realm of quantum

algorithms, the complexity of a span program deciding 5 has a fundamental correspondence

with the quantum query complexity of 5 . Specifically, a span program % can be turned into a

quantum algorithm for 5 with query complexity �(%, �), and moreover, for every 5 , there exists

a span program such that the algorithm constructed in this way is optimal [27]. This second

direction is not constructive: there is no knownmethod for converting a quantum algorithmwith

query complexity) to a span program with complexity �(%, �) = Θ()). However, if we relax

the definition of which functions are decided by a span program, then such a construction is

possible, aswewill show in Section 3.3. The following is a slight relaxation of [15, Definition 2.6].8

8Which was already a relaxation of the notion of a span program deciding a function.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 12

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

Definition 3.6 (A Span Program that Approximately Decides a Function). Let 5 : � → {0, 1}
for � ⊆ {0, 1}= and � ∈ (0, 1). We say that a span program % on {0, 1}= �-approximates 5 if
5 −1(0) ⊆ %0, and for every G ∈ 5 −1(1), there exists an approximate positive witness |F̂〉 such that

�|F̂〉 = |�〉, and

Π�(G)⊥ |F̂〉

2 ≤ �
,−

. We define the approximate positive complexity as

,̂+ = ,̂
�
+ (%, �) = max

G∈ 5 −1(1)
min

{
‖|F̂〉‖2 : �|F̂〉 = |�〉,

Π�(G)⊥ |F̂〉

2 ≤ �

,−

}
.

If % �-approximates 5 , we define the complexity of % (wrt. � and �) as ��(%, �) =
√
,̂+,−.

If � = 0, the span program in Definition 3.6 decides 5 (exactly), and ,̂+ = ,+. By [15,

Theorem 2.10], for any G,

min

{

Π�(G)⊥ |F̂〉

2

: �|F̂〉 = |�〉
}
=

1

F−(G)
.

Thus, since,− = maxG∈ 5 −1(0) F−(G), for every G ∈ 5 −1(0), there does not exist an approximate

positive witness with

Π�(G)⊥ |F̂〉

2

< 1

,−
. Thus, when a span program �-approximates 5 , there

is a gap of size
1−�
,−

between the smallest positive witness error

Π�(G)⊥ |F̂〉

2

of G ∈ 5 −1(1), the
smallest positive witness error of G ∈ 5 −1(0).

Definition 3.7. We define the �-approximate span program size of a function 5 , denoted S̃P�(5), as
theminimum B(%) over families of span programs that �-approximate 5 . We let S̃P(5) = S̃P

1/4(5).

We note that the choice of � = 1/4 in S̃P(5) is arbitrary, as it is possible to modify a span

program to reduce any constant � to any other constant without changing the complexity or the

logarithm of the size asymptotically. This convenient observation is formalized in the following

claim.

Claim 3.8. Let % be a span program that �-approximates 5 : � → {0, 1} for some constant �. For any
constant �′ ≤ �, there exists a span program %′ that �′-approximates 5 with

B(%′) = (B(%) + 2)2
log(1/�′)
log(1/�) , (3.1)

and ��′(%′, �) ≤ $ (��(%, �)).
We prove Claim 3.8 shortly in Section 3.1.1. We have the following corollary that will be

useful later, where mS̃P� is the monotone approximate span program size, defined in Definition 5.1:

Corollary 3.9. For any �, �′ ∈ (0, 1) with �′ < �, and any Boolean function 5 ,

S̃P�(5) ≥ S̃P�′(5)
1

2

log(1/�)
log(1/�′) − 2.

If 5 is monotone, we also have

mS̃P�(5) ≥ mS̃P�′(5)
1

2

log(1/�)
log(1/�′) − 2.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 13

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Remark 3.10. It can sometimes be useful to construct a span program over ℂ. However, for

any span program over ℂ, %, there is a span program over ℝ, %′, such that for all G ∈ %0,

F−(G, %′) ≤ F−(G, %), for all G ∈ %1, F+(G, %′) ≤ F+(G, %), and B(%′) ≤ 2B(%). We define %′

as follows. Without loss of generality, suppose �9 ,1 = spanℂ{| 9 , 1, :〉 : : ∈ (9 ,1}. Define

�′
9 ,1
= spanℝ{| 9 , 1, :, 0〉 : : ∈ (9 ,1 , 0 ∈ {0, 1}}. Define

�′ | 9 , 1, :, 0〉 = Re (�| 9 , 1, :〉) |0〉 + Im (�| 9 , 1, :〉) |1〉

�′ | 9 , 1, :, 1〉 = Re (�| 9 , 1, :〉) |1〉 − Im (�| 9 , 1, :〉) |0〉.

Finally, let |�′〉 = |�〉|0〉.
Suppose |F〉 is a witness in %. Then

|�〉 = �|F〉 = �Re(|F〉) + 8�Im(|F〉)
= Re(�Re(|F〉)) + 8Im(�Re(|F〉)) + 8Re(�Im(|F〉)) − Im(�Im(|F〉)).

Since we can assume |�〉 is real, we have

|�〉 = Re(�Re(|F〉)) − Im(�Im(|F〉)) and Im(�Re(|F〉)) + Re(�Im(|F〉)) = 0.

Define |F′〉 = Re(|F〉)|0〉 + Im(|F〉)|1〉. Then

�′ |F′〉 = Re(�Re(|F〉))|0〉+Im(�Re(|F〉))|1〉+Re(�Im(|F〉))|1〉−Im(�Im(|F〉))|0〉 = |�〉|0〉 = |�′〉.

Note that we have ‖|F〉‖ = ‖|F′〉‖. A similar argument holds for negative witnesses.

Thus, we will restrict our attention to real span programs, but still allow constructions of

span programs over ℂ (in particular, in Section 3.3 and Section 5.2.1).

3.1.1 Proof of Claim 3.8

In this section, we prove Claim 3.8. The proof is somewhat technical, and may be skipped

without compromising the reader’s understanding of the remainder of the paper. We restate

Claim 3.8 below.

Claim 3.8. Let % be a span program that �-approximates 5 : � → {0, 1} for some constant

�. For any constant �′ ≤ �, there exists a span program %′ that �′-approximates 5 with

B(%′) = (B(%) + 2)2
log(1/�′)
log(1/�)

, and ��′(%′, �) ≤ $ (��(%, �)).

Let |F0〉 = �+ |�〉. We say a span program is normalized if ‖|F0〉‖ = 1. A span program can

easily be normalized by scaling |�〉, which also scales all positive witnesses and inverse scales

all negative witnesses. However, we sometimes want to normalize a span program, while also

keeping all negative witness sizes bounded by a constant. We can accomplish this using the

following construction, from [15].

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 14

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

Theorem 3.11. Let % = (�,+, |�〉, �) be a span program on {0, 1}= , and let # = ‖|F0〉‖2. For a
positive real number �, define a span program %� = (�� , +� , |��〉, ��) as follows, where |0̂〉 and |1̂〉 are
not in � or + :

�
�
9 ,1
= �9 ,1 , �

�
true

= �true ⊕ span{|1̂〉}, �
�
false

= �false ⊕ span{|0̂〉}

+� = + ⊕ span{|1̂〉}, �� = �� + |�〉〈0̂| +
√
�2 + #
�

|1̂〉〈1̂|, |��〉 = |�〉 + |1̂〉.

Then we have the following:

•

(��)+ |��〉

 = 1;

• for all G ∈ %1, F+(G, %�) = 1

�2
F+(G, %) + 2;

• for all G ∈ %0, F−(G, %�) = �2F−(G, %) + 1.

Corollary 3.12. Let % be a span program on {0, 1}= , and %� be defined as above for � = 1√
,−(%)

. If %

�-approximates 5 , then %�
√
�-approximates 5 , with,−(%�) ≤ 2, ,̂+(%�) ≤ ,−(%),̂+(%) + 2 and

B(%�) ≤ B(%) + 2.

Proof. First note that by Theorem 3.11,,−(%�) ≤ 2. Let |F〉 be an approximate positive witness

for G in %, with

Π�(G)⊥ |F〉

2 ≤ �

,−(%) and ‖|F〉‖
2 ≤ ,̂+(%). Define

|F′〉 = 1

�(1 + �) |F〉 +
�√

�2 + #
|1̂〉 + �

1 + � |0̂〉.

One can check that �� |F′〉 = |��〉.

Π��(G)⊥ |F′〉

2

=
1

�2(1 + �)2

Π�(G)⊥ |F〉

2 + �2

(1 + �)2 ≤
1

�2(1 + �)2
�

,−(%)
+ �2

(1 + �)2

=
� + �2

(1 + �)2 ≤
2�(1 + �)

,−(%�)(1 + �)2
=

1

,−(%�)
2�

1 + � ≤
√
�

,−(%�)
,

where we have used,−(%�) ≤ 2. We upper bound ,̂+(%�) by noting that:

‖|F′〉‖2 ≤ 1

�2(1 + �)2,̂+(%) +
�2

�2 + # +
�2

(1 + �)2

≤ ,−(%),̂+(%) + 2.

Finally, B(%�) = B(%) + 2 because of the two extra degrees of freedom |0̂〉 and |1̂〉. �

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 15

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Proof of Claim 3.8. We will first show how, given a span program % such that ‖|F0〉‖2 ≤ 1, and %

�-approximates 5 , we can get a span program %′ such that

|F′
0
〉

2 ≤ 1,,−(%′) ≤ ,−(%)2, %′

�2
-approximates 5 , ,̂+(%′) ≤ 4,̂+(%), and B(%′) = B(%)2.
Define %′ as follows, where (is a swap operator, which acts as ((|D〉|E〉) = |E〉|D〉 for all

|D〉, |E〉 ∈ �:

�′9 ,1 = �9 ,1 ⊗ �, �′ = (� ⊗ �)
(
��⊗� + (

2

)
, |�′〉 = |�〉|�〉.

Observe that for any |D〉, |E〉 ∈ �, we have

�′(|D〉|E〉 − |E〉|D〉) = 0, and �′ |D〉|D〉 = �|D〉 ⊗ �|D〉.

Note that �′(|F0〉|F0〉) = |�′〉, so

�′+ |�′〉

 ≤ ‖|F0〉|F0〉‖ ≤ 1.

If 〈$ | is a negative witness for G in %, it is easily verified that 〈$′ | = 〈$ | ⊗ 〈$ | is a negative
witness in %′, and

‖〈$′ |�′‖2 =

1

2

(〈$ |�) ⊗ (〈$ |�) + 1

2

(〈$ |�) ⊗ (〈$ |�)

2

= ‖〈$ |�‖4 ,

so F−(G, %′) ≤ F−(G, %)2, and,−(%′) ≤ ,−(%)2.
If |F〉 is an approximate positive witness for G in %, then define

|F′〉 = |F〉|F〉 −Π�(G)⊥ |F〉Π�(G) |F〉 +Π�(G) |F〉Π�(G)⊥ |F〉 −Π�(G) |F〉Πker(�) |F〉.

We have

�′ |F′〉 = �|F〉�|F〉 − 1

2

(
�Π�(G) |F〉 ⊗ �Πker(�) |F〉 + �Πker(�) |F〉 ⊗ �Π�(G) |F〉

)
= |�〉|�〉 = |�′〉.

We can bound the error as:

Π�′(G)⊥ |F′〉

2

=

(Π�(G)⊥ ⊗ �)|F′〉

2

=

Π�(G)⊥ |F〉|F〉 −Π�(G)⊥ |F〉Π�(G) |F〉

2

=

Π�(G)⊥ |F〉Π�(G)⊥ |F〉

2 ≤ �2

,−(%)2
≤ �2

,−(%′)
.

Next, observe that

(Π�(G) +Π�(G)⊥) ⊗ (Π�(G) +Π�(G)⊥) −Π�(G)⊥ ⊗ Π�(G) +Π�(G) ⊗ Π�(G)⊥

= Π�(G) ⊗ Π�(G) +Π�(G) ⊗ Π�(G)⊥ +Π�(G)⊥ ⊗ Π�(G)⊥ +Π�(G) ⊗ Π�(G)⊥

= Π�(G) ⊗ � + � ⊗ Π�(G)⊥

so |F′〉 = Π�(G) |F〉 ⊗ |F〉 + |F〉 ⊗ Π�(G)⊥ |F〉 −Π�(G) |F〉 ⊗ Πker(�) |F〉.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 16

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

Thus, using the assumption ‖|F0〉‖ ≤ 1, and the fact that Π
row(�) |F〉 = |F0〉:

‖|F′〉‖2 =

Π�(G) |F〉|F〉 + |F〉Π�(G)⊥ |F〉 −Π�(G) |F〉Πker(�) |F〉

2

=

Π�(G) |F〉Πrow(�) |F〉 + |F〉Π�(G)⊥ |F〉

2

=

Π�(G) |F〉|F0〉

2 +

|F〉Π�(G)⊥ |F〉

2 + 2

Π�(G) |F〉

2 〈F0 |Π�(G)⊥ |F〉

≤ ,̂+(%) + ,̂+(%)
�

,−(%)
+ 2,̂+(%)

√
�

,−(%)
≤ (1 + � + 2

√
�),̂+(%).

Note that we could assume that ,̂−(%) ≥ 1 because ‖F0‖ ≤ 1.

We complete the proof by extending to the general case. Let % be any span program that

�-approximates 5 . By applying Theorem 3.11 and Corollary 3.12, we can get a span program, %0,

with ‖|F0〉‖ = 1,,−(%0) ≤ 2, ,̂+(%0) ≤ �(%)2 + 2, and B(%0) = B(%) + 2, that

√
�-approximates 5 .

We can then apply the construction described above, iteratively, 3 times, to get a span program

%3 that
√
�

2
3

= �2
3−1

-approximates 5 , with

B(%3) = B(%0)2
3

= (B(%) + 2)23 ,

,−(%3) ≤ 2
2
3

, and ,̂+(%3) ≤ 4
3,̂+(%0) ≤ 4

3�(%)2 + 2 · 43 .

Setting 3 = log

(
log(1/�′)
log(1/�)

)
+ 1 gives the desired �′. �

3.2 From span programs to quantum algorithms

In this section, we will prove Theorem 3.1, which states that if a span program approximately

decides a function 5 , then we can compile it to a quantum algorithm for 5 . While we hope that

Theorem 3.1 will have applications in designing span program algorithms, its only relevance

to the contents of this paper are its implications with respect to the tightness of the first lower

bound expression in Theorem 4.1, and so this section can be safely skipped.

Theorem 3.1 is similar to [15, Lemma 3.6], the difference here is we let an approximate

positive witness for G be any witness with error,

Π�(G)⊥ |F〉

2

, at most �/,−, whereas in [15], it

is required to have error as small as possible. This relaxation could potentially decrease the

positive complexity ,̂+, since we now have more freedom in selecting positive witnesses, but

more importantly, it makes it easier to analyze a span program, because we need not find the

approximate positive witness with the smallest possible error. Importantly, this change in how

we define a span program that approximates 5 does not change the most important property of

such a span program: that it can be compiled into a quantum algorithm for 5 . To show this,

we now modify the proof of [15, Lemma 3.6] to fit the new definition. We will restrict to span

programs on binary strings {0, 1}= , but the proof also works for span programs on [@]= for @ > 2.

Proof of Theorem 3.1. For a span program % on {0, 1}= and G ∈ {0, 1}= , define

*(%, G) = (2Π
ker(�) − �)(2Π�(G) − �),

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 17

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

which acts on �. To prove Theorem 3.1, we will show that by performing phase estimation of

*(%, G) on initial state |F0〉 = �+ |�〉, and estimating the amplitude on having |0〉 in the phase

register, we can distinguish 1- and 0-inputs of 5 with bounded error.

By Corollary 3.12 and Claim 3.8, we can assume without loss of generality that % has been

scaled so that it �-approximates 5 for some � < 1/4, |F0〉 = �+ |�〉 is a unit vector, and,− ≤ 2.

The scaled span program still has size $(1) and complexity $(�).
We first modify the proof of [15, Lemma 3.2] to get the following lemma:

Lemma 3.13. Let % be a span program that �-approximates 5 , with ‖|F0〉‖2 = 1. Fix any Θ ∈ (0,�),
and let ΠΘ be the projector onto the e

8�-eigenspaces of*(%, G) with |� | ≤ Θ. For any G ∈ 5 −1(1),

‖ΠΘ |F0〉‖2 ≤ Θ2,̂+ +
4�
,−

.

Proof. Suppose G ∈ 5 −1(1) and let |F̂G〉 be an approximate positive witness with

Π�(G)⊥ |F̂G〉

2 ≤

�
,−

and ‖|F̂G〉‖2 ≤ ,̂+. Note that since �|F̂G〉 = |�〉, Πrow(�) |F̂G〉 = �+�|F̂G〉 = �+ |�〉 = |F0〉, so

Π
row(�)Π�(G) |F̂G〉 +Πrow(�)Π�(G)⊥ |F̂G〉 = |F0〉.

Since Π�(G)⊥Π�(G) |F̂G〉 = 0, we have, by the effective spectral gap lemma (Lemma 2.1):

ΠΘΠrow(�)Π�(G) |F̂G〉

2 ≤ Θ

2

4

Π�(G) |F̂G〉

2

ΠΘ

(
|F0〉 −Πrow(�)Π�(G)⊥ |F̂G〉

)

2 ≤ Θ
2

4

‖|F̂G〉‖2

‖ΠΘ |F0〉‖2 +

ΠΘΠrow(�)Π�(G)⊥ |F̂G〉

2 − 2〈F0 |ΠΘΠrow(�)Π�(G)⊥ |F̂G〉 ≤
Θ2

4

,̂+

‖ΠΘ |F0〉‖2 − 2 ‖ΠΘ |F0〉‖

Π�(G)⊥ |F̂G〉

 ≤ Θ2

4

,̂+

‖ΠΘ |F0〉‖2 − 2 ‖ΠΘ |F0〉‖
√

�
,−
≤ Θ

2

4

,̂+.

This is satisfied only when

‖ΠΘ |F0〉‖ ≤
√

�
,−
+

√
�
,−
+ Θ

2

4

,̂+ ≤ 2

√
Θ2

4

,̂+ +
�
,−

‖ΠΘ |F0〉‖2 ≤ Θ2,̂+ +
4�
,−

. �

We will let Θ2 = 1−4�
2,̂+,−

. Then when 5 (G) = 0, we have

‖Π0 |F0〉‖2 =
1

F−(G)
≥ 1

,−
=: @0 ,

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 18

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

by [15, Lemma 3.3]. On the other hand, when 5 (G) = 1, we have

‖ΠΘ |F0〉‖2 ≤ Θ2,̂+ + 4

�
,−

=
1 − 4�
2,−

+ 4�
,−

=
1 + 4�
2,−

=: @1.

Wewant to distinguish these two cases using 1/Θ steps of phase estimation, and then estimating

the amplitude on having an estimate of 0 in the phase register to precision:

Δ =
@0 − @1

2

=
1 − 4�
4,−

.

This will allow us to distinguish between amplitude ≥ @0 and amplitude ≤ @1. Since � < 1

4

is a constant, Δ = Ω(1/,−), and thus we use $(1/Δ) = $(,−) = $(1) (recall that we are

assuming the span program has been scaled) calls to phase estimation, each of which requires

$(1/Θ) = $
(√
,̂+,−

)
= $(�) controlled calls to* (for more details, see the nearly identical

proof of [15, Lemma 3.2]). Since *(%, G) can be implemented in cost one query, the query

complexity of this algorithm is $(�).
The algorithm needs a single register of dimension dim� = $(1) to apply *(%, G), $(1)

registers of dimension 1/Θ to act as phase registers in phase estimation, and $(1) registers
of dimension $(1/Δ) to act as phase registers in the amplitude estimation, for a total space

requirement of

log dim� + $
(
log

1

Δ

)
+ $

(
log

1

Θ

)
= $(log) + $(log�).

To complete the proof, we note that the algorithm is unitary, since it consists of phase estimation,

composed unitarily with amplitude estimation. �

3.3 From quantum algorithms to span programs

In this section, we will show how to turn a unitary quantum algorithm into a span program,

proving Theorem 3.2, which implies Theorem 1.1. The construction we use to prove Theorem 3.2

is based on a construction of Reichardt for turning any one-sided error quantum algorithm

into a span program whose complexity matches the algorithm’s query complexity [27, arXiv

version]. We observe that a similar construction also works for two-sided error algorithms,9 but

the resulting span program only approximately decides 5 .

The algorithm Fix a function 5 : � → {0, 1} for� ⊆ {0, 1}= , and a unitary quantum algorithm

A such that on input G ∈ 5 −1(0), Pr[A(G) = 1] ≤ 1

3
, and on input G ∈ 5 −1(1), Pr[A(G) = 1] ≥ 1−�,

for � ∈ {0, 1

3
}, depending on whether we want to consider a one-sided error or a bounded error

algorithm. Let ?0(G) = Pr[A(G) = 0], so if 5 (G) = 0, ?0(G) ≥ 2/3, and if 5 (G) = 1, ?0(G) ≤ �.

9A preliminary version of this result appeared in [16], but there was an error in the proof, which is fixed by our

new definition of approximate span programs.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 19

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

We can suppose A acts on three registers: a query register span{| 9〉 : 9 ∈ [=] ∪ {0}}; a
workspace register span{|I〉 : I ∈ Z} for some finite set of symbolsZ that contains 0; and an

answer register span{|0〉 : 0 ∈ {0, 1}}. The query operator OG acts on the query register as

OG | 9〉 = (−1)G 9 | 9〉 if 9 ≥ 1, and OG |0〉 = |0〉. IfA makes) queries, the final state ofA is:

|Ψ2)+1(G)〉 = *2)+1OG*2)−1 . . . *3OG*1 |0, 0, 0〉

for someunitaries*2)+1 , . . . , *1. The output bit of the algorithm,A(G), is obtained bymeasuring

the answer register of |Ψ2)+1(G)〉. We have given the input-independent unitaries odd indicies

so that we may refer to the C-th query as*2C .

Let |Ψ0(G)〉 = |Ψ0〉 = |0, 0, 0〉 denote the starting state, and for C ∈ {1, . . . , 2) + 1}, let
|ΨC(G)〉 = *C . . . *1 |Ψ0〉 denote the state after C steps.

The span program We now define a span program %A fromA. The space � will represent

all three registers of the algorithm, with an additional time counter register, and an additional

register to represent a query value 1.

� = span{|C , 1, 9, I, 0〉 : C ∈ {0, . . . , 2) + 1}, 1 ∈ {0, 1}, 9 ∈ [=] ∪ {0}, I ∈ Z, 0 ∈ {0, 1}}.

We define + and � as follows, where 2 is some constant to be chosen later:

+ = span{|C , 9, I, 0〉 : C ∈ {0, . . . , 2) + 1}, 9 ∈ [=] ∪ {0}, I ∈ Z, 0 ∈ {0, 1}}

�|C , 1, 9, I, 0〉 =


|C , 9, I, 0〉 − |C + 1〉*C+1 | 9 , I, 0〉 if C ∈ {0, . . . , 2)} is even
|C , 9, I, 0〉 − (−1)1 |C + 1, 9 , I, 0〉 if C ∈ {0, . . . , 2)} is odd (i. e.,*C+1 = OG)
|C , 9, I, 0〉 if C = 2) + 1, 0 = 1, and 1 = 0√
2) |C , 9, I, 0〉 if C = 2) + 1, 0 = 0, and 1 = 0

0 if C = 2) + 1 and 1 = 1.

For C ≤ 2), �|C , 1, 9, I, 0〉 should be intuitively understood as applying *C+1 to | 9 , I, 0〉, and
incrementing the counter register from |C〉 to |C + 1〉. When C is even, this correspondence is

clear (in that case, the value of 1 is ignored). When C is odd, so*C+1 = OG , then as long as 1 = G 9 ,

(−1)1 |C + 1, 9 , I, 0〉 = |C + 1〉*C+1 | 9 , I, 0〉. We thus define

�9 ,1 = span{|C , 1, 9, I, 0〉 : C ∈ {0, . . . , 2)} is odd, I ∈ Z, 0 ∈ {0, 1}}.

For even C, applying *C+1 is independent of the input, so we make the corresponding states

available to every input; along with states where the query register is set to 9 = 0, meaning OG
acts input-independently; and accepting states, whose answer register is set to 1 at time 2) + 1:

�true = span{|C , 1, 9, I, 0〉 : C ∈ {0, . . . , 2)} is even, 1 ∈ {0, 1}, 9 ∈ [=], I ∈ Z, 0 ∈ {0, 1}}
⊕ span{|C , 1, 0, I, 0〉 : C ∈ {0, . . . , 2)}, 1 ∈ {0, 1}, I ∈ Z, 0 ∈ {0, 1}}
⊕ span{|2) + 1, 1, 9, I, 1〉 : 1 ∈ {0, 1}, 9 ∈ [=] ∪ {0}, I ∈ Z}.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 20

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

The remaining part of � will be assigned to �false:

�false = span{|2) + 1, 1, 9, I, 0〉 : 1 ∈ {0, 1}, 9 ∈ [=] ∪ {0}, I ∈ Z}.

Note that in defining �, we have put a large factor of

√
2) in front of �|2) + 1, 0, 9 , I, 0〉, making

the vectors in �false very “cheap” to use. These vectors are never in �(G), but will be used as

the error part of approximate positive witnesses, and the

√
2) ensures they only contribute

relatively small error.

Finally, we define:

|�〉 = |0, 0, 0, 0〉 = |0〉|Ψ0〉.

Intuitively, we can construct |�〉, the initial state, using a final state that has 1 in the answer

register, and using the transitions |C , 9, I, 0〉 − |C + 1〉*C+1 | 9 , I, 0〉 to move from the final state to

the initial state. In the following analysis, we make this idea precise.

Analysis of %A We will first show that for every G there is an approximate positive witness

with error depending on its probability of being rejected byA, ?0(G).

Lemma 3.14. For any G ∈ {0, 1}= , there exists an approximate positive witness |F〉 for G in %A such
that:

‖|F〉‖2 ≤ 2) + 2, and

Π�(G)⊥ |F〉

2 ≤
?0(G)
2)

.

In particular, if 5 (G) = 1,

Π�(G)⊥ |F〉

2 ≤ �

2)
.

Proof. Let &G be the linear isometry that acts as

&G | 9 , I, 0〉 = |G 9 , 9 , I, 0〉 ∀9 ∈ [=] ∪ {0}, I ∈ Z, 0 ∈ {0, 1},

where we interpret G0 as 0. Note that for all | 9 , I, 0〉, and C ∈ {0, . . . , 2)}, we have

�(|C〉&G | 9 , I, 0〉) = |C , 9, I, 0〉 − |C + 1〉*C+1 | 9 , I, 0〉.

Let Π0 =
∑
9∈[=]∪{0},I∈Z | 9 , I, 0〉〈9 , I, 0 | be the orthogonal projector onto states of the algorithm

with answer register set to 0. We will construct a positive witness for G from the states of the

algorithm on input G, as follows:

|F〉 =
2)∑
C=0

|C〉&G |ΨC(G)〉 + |2) + 1〉|0〉Π1 |Ψ2)+1(G)〉 +
1√
2)
|2) + 1〉|0〉Π0 |Ψ2)+1(G)〉.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 21

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

To see that this is a positivewitness, we compute�|F〉, using the fact that*C+1 |ΨC(G)〉 = |ΨC+1(G)〉.

�|F〉 =
2)∑
C=0

(|C〉|ΨC(G)〉 − |C + 1〉*C+1 |ΨC(G)〉) + |2) + 1〉Π1 |Ψ2)+1(G)〉 + |2) + 1〉Π0 |Ψ2)+1(G)〉

=

2)∑
C=0

|C〉|ΨC(G)〉 −
2)∑
C=0

|C + 1〉|ΨC+1(G)〉 + |2) + 1〉|Ψ2)+1(G)〉

=

2)+1∑
C=0

|C〉|ΨC(G)〉 −
2)+1∑
C=1

|C〉|ΨC(G)〉 = |0〉|Ψ0(G)〉 = |�〉.

We next consider the error of |F〉 for G, given by

Π�(G)⊥ |F〉

2

. Since &G | 9 , I, 0〉 ∈ �(G) for
all 9 , I, 0, and |2) + 1, 0〉Π1 |Ψ2)+1(G)〉 ∈ �true ⊂ �(G), Π�(G)⊥ |F〉 = 1√

2)
|2) + 1〉|0〉Π0 |Ψ2)+1(G)〉,

so

Π�(G)⊥ |F〉

2

=
1

2)
‖Π0 |Ψ2)+1(G)〉‖2 =

?0(G)
2)

.

Finally, we compute an upper bound on the positive witness complexity of |F〉.

‖|F〉‖2 =
2)∑
C=0

‖&G |ΨC(G)〉‖2 + ‖Π1 |Ψ2)+1(G)〉‖2 +
1

2)
‖Π0 |Ψ2)+1(G)〉‖2

≤
2)∑
C=0

‖|ΨC(G)〉‖2 + ‖|Ψ2)+1(G)〉‖2 = 2) + 2. �

Next, we compute an upper bound on F−(G)whenever 5 (G) = 0.

Lemma 3.15. For any G that is rejected byA with probability ?0(G) > 0,

F−(G) ≤
(2 + 4))
?0(G)

.

In particular, if 5 (G) = 0, F−(G) ≤ 2+4

2/3), so,− ≤
2+4

2/3).

Proof. We will define a negative witness for G as follows. First, define

|Ψ0

2)+1
(G)〉 = Π0 |Ψ2)+1(G)〉,

the rejecting part of the final state. This is non-zero whenever ?0(G) > 0. Then for C ∈ {0, . . . , 2)},
define

|Ψ0

C (G)〉 = *†C+1
. . . *†

2)+1
|Ψ0

2)+1
(G)〉.

From this we can define

〈$ | =
2)+1∑
C=0

〈C |〈Ψ0

C (G)|.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 22

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

We first observe that

〈$ |�〉 = 〈Ψ0

0
(G)|0, 0, 0〉 = 〈Ψ0

2)+1
(G)|*2)+1 . . . *1 |0, 0, 0〉 = 〈Ψ0

2)+1
(G)|Ψ2)+1(G)〉 = ?0(G).

Thus

〈$̄ | = 1

?0(G)
〈$ |

is a negative witness. Next, we show that 〈$ |�Π�(G) = 0. First, for |C , G 9 , 9 , I, 0〉 ∈ �9 ,G 9 (so

C < 2) is odd), we have

〈$ |�|C , G 9 , 9 , I, 0〉 = 〈$ |(|C , 9, I, 0〉 − (−1)G 9 |C + 1〉| 9 , I, 0〉)
= 〈Ψ0

C (G)| 9 , I, 0〉 − (−1)G 9 〈Ψ0

C+1
(G)| 9 , I, 0〉

= 〈Ψ0

C+1
(G)|*C+1 | 9 , I, 0〉 − (−1)G 9 〈Ψ0

C+1
(G)| 9 , I, 0〉

= 〈Ψ0

C+1
(G)|OG | 9 , I, 0〉 − (−1)G 9 〈Ψ0

C+1
(G)| 9 , I, 0〉 = 0.

The same argument holds for |C , 0, 0, 9 , I, 0〉 ∈ �true. Similarly, for any |C , 1, 9, I, 0〉 ∈ �true with

C ≤ 2) even, we have

〈$ |�|C , 1, 9, I, 0〉 = 〈$ |(|C , 9, I, 0〉 − |C + 1〉*C+1 | 9 , I, 0〉)
= 〈Ψ0

C (G)| 9 , I, 0〉 − 〈Ψ0

C+1
(G)|*C+1 | 9 , I, 0〉 = 0.

Finally, for any |2) + 1, 1, 9, I, 1〉 ∈ �true, we have

〈$ |�|2) + 1, 1, 9, I, 1〉 = 〈$ |2) + 1, 9 , I, 1〉 = 〈Ψ0

2)+1
(G)| 9 , I, 1〉 = 0.

Thus 〈$ |�Π�(G) = 0 and so 〈$̄ |�Π�(G) = 0, and 〈$̄ | is a negative witness for G in %. To compute

its witness complexity, first observe that 〈$ |� = 〈$ |�Π�(G)⊥ , and

�Π�(G)⊥ =
)∑
B=1

∑
9∈[=]∪{0},I∈Z,0∈{0,1}

(|2B − 1, 9 , I, 0〉 + (−1)G 9 |2B, 9, I, 0〉)〈2B − 1, Ḡ 9 , 9 , I, 0 |

+
∑

9∈[=]∪{0},I∈Z

√
2) |2) + 1, 9 , I, 0〉〈2) + 1, 0, 9 , I, 0|

so, using 〈Ψ0

2B−1
(G)| 9 , I, 0〉 = 〈Ψ0

2B
(G)|*2B | 9 , I, 0〉 = (−1)G 9 〈Ψ0

2B
(G)| 9 , I, 0〉, we have:

〈$ |�Π�(G)⊥ =
)∑
B=1

∑
9∈[=]∪{0},I∈Z,0∈{0,1}

(〈Ψ0

2B−1
(G)| 9 , I, 0〉 + (−1)G 9 〈Ψ0

2B(G)| 9 , I, 0〉)〈2B − 1, Ḡ 9 , 9 , I, 0 |

+
∑

9∈[=]∪{0},I∈Z

√
2)〈Ψ0

2)+1
(G)| 9 , I, 0〉〈2) + 1, 0, 9 , I, 0|

=

)∑
B=1

∑
9∈[=]∪{0},I∈Z,0∈{0,1}

2(−1)G 9 〈Ψ0

2B(G)| 9 , I, 0〉)〈2B − 1, Ḡ 9 , 9 , I, 0 |

+
∑

9∈[=]∪{0},I∈Z

√
2)〈Ψ0

2)+1
(G)| 9 , I, 0〉〈2) + 1, 0, 9 , I, 0|.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 23

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Thus, the complexity of 〈$̄ | is:

‖〈$̄ |�‖2 = 1

?0(G)2

〈$ |�Π�(G)⊥

2

=
1

?0(G)2
)∑
B=1

∑
9∈[=]∪{0},
I∈Z,
0∈{0,1}

4

��〈Ψ0

2B(G)| 9 , I, 0〉
��2 + 1

?0(G)2
∑

9∈[=]∪{0},
I∈Z

2)
��〈Ψ0

2)+1
(G)| 9 , I, 0〉

��2

=
4

?0(G)2
)∑
B=1

|Ψ0

2B(G)〉

2 + 2)

?0(G)2

|Ψ0

2)+1
(G)〉

2

.

Because each*C is unitary, we have

|Ψ0

2B
(G)〉

2

=

|Ψ0

2)+1
(G)〉

2

= ?0(G), thus:

‖〈$̄ |�‖2 = 4)

?0(G)
+ 2)

?0(G)
≤ 4 + 2

2/3) when 5 (G) = 0. �

We conclude the proof of Theorem 3.2 with the following corollary, from which Theorem 3.2

follows immediately, by appealing to Claim 3.8 with � = 9

10
and �′ any constant in (0, 1).

Corollary 3.16. Let 2 = 5, in the definition of %A . Then:

• B(%A) = 2
(+$(1)

• IfA decides 5 with one-sided error, then %A decides 5 with complexity � ≤ $()).

• IfA decides 5 with bounded error, then %A 9

10
-approximates 5 with complexity �� ≤ $()).

Proof. We first compute B(%A) = dim� using the fact that the algorithm uses space

(= log dim span{| 9 , I, 0〉 : 9 ∈ [=] ∪ {0}, I ∈ Z, 0 ∈ {0, 1}} + log).

We have:

dim� = (dim span{|C , 1〉 : C ∈ {0, . . . , 2) + 1}, 1 ∈ {0, 1}})2(−log) = 2
(+$(1).

We prove the third statement, as the second is similar. By Lemma 3.15, using 2 = 5, we have

,− ≤
5 + 4

2/3) =
27

2

).

By Lemma 3.14, we can see that for every G such that 5 (G) = 1, there is an approximate positive

witness |F〉 for G with error at most

�
2)

=
1/3
5)
≤ 1

15)

27

2
)

,−
=

9

10

1

,−
.

Furthermore, ‖|F〉‖2 ≤ 2) + 2, so ,̂+ ≤ 2) + 2. Observing �� =

√
,−,̂+ ≤

√
27)() + 1)

completes the proof. �

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 24

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

4 Span programs and space complexity

Using the transformation from algorithms to span programs from Section 3.3, we immediately

have the following connections between span program size and space complexity.

Theorem 4.1. For any 5 : � → {0, 1} for � ⊆ {0, 1}= , we have

S* (5) ≥ Ω
(
log S̃P(5)

)
and S1

* (5) ≥ Ω
(
log SP(5)

)
.

Theorem 4.1 is a corollary of Theorem 3.2. Theorem 3.1 shows that the lower bound for S* (5) in
Theorem 4.1 is part of a tight correspondence between space complexity and log B(%) + log�(%).

Theorem 2.9 of [5] gives a lower bound of SP(5) ≥ Ω(2=/3/(= log =)1/3) for almost all =-bit

Boolean functions. Combined with Theorem 4.1, we immediately have:

Theorem 4.2. For almost all Boolean functions 5 : {0, 1}= → {0, 1}, S1

*
(5) = Ω(=).

Ideally, we would like to use the lower bound in Theorem 4.1 to prove a non-trivial lower

bound for S* (5) or S1

*
(5) for some explicit function 5 . Fortunately, there are somewhat nice

expressions lower bounding SP(5) [25, 11], which we extend to lower bounds of S̃P(5) in the

remainder of this section. However, on the unfortunate side, there has already been significant

motivation to instantiate these expressions to non-trivial lower bounds for explicit 5 , with no

success. There has been some success in monotone versions of these lower bounds, which we

discuss more in Section 5.

For a function 5 : � → {0, 1} for � ⊆ {0, 1}= , and an index 9 ∈ [=], we let Δ 5 , 9 ∈
{0, 1} 5 −1(0)× 5 −1(1)

be defined by Δ 5 , 9[H, G] = 1 if and only if G 9 ≠ H 9 . When 5 is clear from context,

we simply denote this by Δ9 . The following tight characterization of SP(5)may be found in, for

example, [23].

Lemma 4.3. For any 5 : � → {0, 1} for � ⊆ {0, 1}= ,

SP(5) = minimize

∑
9∈[=]

rank(Λ9)

subject to ∀9 ∈ [=],Λ9 ∈ ℝ 5 −1(0)× 5 −1(1)∑
9∈[=]

Λ9 ◦ Δ9 = � ,

where � is the 5 −1(0) × 5 −1(1) all-ones matrix.

By Theorem 4.1, the logarithm of the above is a lower bound on S1

*
(5). Wemodify Lemma 4.3

to get the following approximate version, whose logarithm lower bounds S* (5)when � = 1

4
.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 25

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Lemma 4.4. For any � ∈ [0, 1), and 5 : � → {0, 1} for � ⊆ {0, 1}= ,

S̃P�(5) ≥ minimize

∑
9∈[=]

rank(Λ9) (4.1)

subject to ∀9 ∈ [=],Λ9 ∈ ℝ 5 −1(0)× 5 −1(1)

∑
9∈[=]

Λ9 ◦ Δ9 − �

∞

≤
√
�.

Proof. Fix a span program that �-approximates 5 with B(%) = S̃P�(5), and let {〈$H | : H ∈ 5 −1(0)}
be optimal negative witnesses, and {|FG〉 : G ∈ 5 −1(1)} be approximate positive witnesses with

Π�(G) |FG〉

2 ≤ �
,−

. Letting Π9 ,1 denote the projector onto �9 ,1 , define

Λ9 =

(∑
H

|H〉〈$H |�Π9 ,H̄9

) (∑
G

Π9 ,G 9 |FG〉〈G |
)
,

so Λ9 has rank at most dim�9 , and so

∑
9∈[=] rank(Λ9) ≤ B(%) = S̃P�(5).

We now show that {Λ9} 9 is a feasible solution. Let |err(G)〉 be the positive witness error of

|FG〉, |err(G)〉 = Π�(G)⊥ |FG〉 =
∑=
9=1
Π9 ,Ḡ 9 |FG〉. Then we have:

〈H |
=∑
9=1

Λ9 ◦ Δ9 |G〉 = 〈$H |�
∑
9:G 9≠H9

Π9 ,G 9 |FG〉 = 〈$H |�
©­«|FG〉 −

∑
9:G 9=H9

Π9 ,G 9 |FG〉 − |err(G)〉ª®¬
= 〈$H |�〉 − 〈$H |�

∑
9:G 9=H9

Π�(H)Π9 ,G 9 |FG〉 − 〈$H |�|err(G)〉

= 1 − 0 − 〈$H |�|err(G)〉������1 − 〈H | =∑
9=1

Λ9 ◦ Δ9 |G〉

������ ≤

〈$H |�

 ‖|err(G)〉‖ =

√
F−(H)

�
,−
≤
√
�.

Above we used the fact that 〈$H |�Π�(H) = 0. Thus, {Λ9} 9 is a feasible solution with objective

value ≤ S̃P�(5), so the result follows. �

As a corollary of the above, and the connection between span program size and unitary

quantum space complexity stated in Theorem 4.1, the logarithm of the expression in (4.1) with

� = 1

4
is a lower bound on S* (5), and with � = 0, it is a lower bound on S1

*
(5). However, as

stated, it is difficult to use this expression to prove an explicit lower bound, because it is a

minimization problem. We will shortly give a lower bound in terms of a maximization problem,

making it possible to obtain explicit lower bounds by exhibiting a feasible solution.

A partial matrix is a matrix " ∈ (ℝ ∪ {★}) 5 −1(0)× 5 −1(1)
. A completion of " is any " ∈

ℝ 5 −1(0)× 5 −1(1)
such that "[H, G] = "[H, G] whenever "[H, G] ≠ ★. For a partial matrix ", define

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 26

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

rank(") to be the smallest rank of any completion of ", and �-rank(") to be the smallest rank

of any "̃ such that |"[H, G] − "̃[H, G]| ≤ � for all H, G such that "[H, G] ≠ ★. Let " ◦ Δ8 to be

the partial matrix defined:

" ◦ Δ8[H, G] =
{
"[H, G] if Δ8[H, G] = 1

0 if Δ8[H, G] = 0.

Then we have the following corollary of [11, Lemma 3.2, Theorem 3.4] and Theorem 4.1:

Lemma 4.5. For all Boolean functions 5 : � → {0, 1}, with � ⊆ {0, 1}= , and all partial matrices
" ∈ (ℝ ∪ {★}) 5 −1(0)× 5 −1(1) such that max{|"[H, G]| : "[H, G] ≠ ★} ≤ 1:

S1

* (5) ≥ Ω
(
log

(
rank(")

max8∈[=] rank(" ◦ Δ8)

))
.

In [25], Razborov showed that the expression on the right-hand side in Lemma 4.5 is a lower

bound on the logarithm of the formula size of 5 (Ref. [11] related this to SP(5)). Later, in [26],

Razborov noted that when restricted to non-partial matrices, this can never give a better bound

than =. Thus, to prove a non-trivial lower bound on S1

*
(5) using this method, one would need

to use a partial matrix. We prove the following generalization to the approximate case.

Lemma 4.6. For all Boolean functions 5 : � → {0, 1}, with � ⊆ {0, 1}= , and all partial matrices
" ∈ (ℝ ∪ {★}) 5 −1(0)× 5 −1(1) such that max{|"[H, G]| : "[H, G] ≠ ★} ≤ 1:

S* (5) ≥ Ω
(
log

(
1

2
-rank(")

max8∈[=] rank(" ◦ Δ8)

))
.

Proof. Let {Λ9} 9 be an optimal feasible solution for the expression from Lemma 4.4, so

S̃P�(5) ≥
∑
9∈[=]

rank(Λ9), and

∑
9∈[=]

Λ9 ◦ Δ9 − �

∞

≤
√
�.

Let " 9 be a completion of " ◦ Δ9 with rank(" ◦ Δ9) = rank(" 9). Then for any G, H such that

"[H, G] ≠ ★:������©­«
∑
9∈[=]

" 9 ◦Λ9
ª®¬ [H, G] −"[H, G]

������ =
������∑9∈[=]"[H, G]Δ9[H, G]Λ9[H, G] −"[H, G]

������
≤ |"[H, G]|

∑
9∈[=]

Δ9 ◦Λ9 − �

∞

≤
√
�.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 27

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Thus

√
�-rank(") ≤ rank

©­«
∑
9∈[=]

" 9 ◦Λ9
ª®¬ ≤

∑
9∈[=]

rank(" 9 ◦Λ9).

Using the fact that for any matrices � and �, rank(� ◦ �) ≤ rank(�)rank(�), we have

√
�-rank(") ≤

∑
9∈[=]

rank(Λ9)rank(" 9) ≤ S̃P�(5)max

9∈[=]
rank(" ◦ Δ9).

Setting � = 1

4
, and noting that by Theorem 4.1, S* (5) ≥ log S̃P(5) = log S̃P

1/4(5) completes the

proof. �

Unfortunately, as far as we are aware, nobody has used this lower bound to successfully

prove any explicit, non-trivial formula size lower bound of 2
$(log =)

, so it seems to be quite

difficult. However, there has been some success proving lower bounds in the monotone span

program case, even without resorting to partial matrices, which we discuss in the next section.

5 Monotone span programs and monotone algorithms

A monotone function is a Boolean function in which H ≤ G implies 5 (H) ≤ 5 (G), where H ≤ G
should be interpreted bitwise. In other words, flipping 0s to 1s either keeps the function value

the same, or changes it from 0 to 1. A monotone span program is a span program in which

�8 ,0 = {0} for all 8, so only 1-valued queries contribute to �(G), hence �(H) ⊆ �(G)whenever

H ≤ G. A monotone span program can only decide or approximate a monotone function.

Definition 5.1. For amonotone function 5 , define themonotone span program size, denotedmSP(5),
as the minimum B(%) over (families of) monotone span programs % such that % decides 5 ; and

the approximate monotone span program size, denoted mS̃P�(5), as the minimum B(%) over (families

of) monotone span programs % such that % �-approximates 5 . We let mS̃P(5) = mS̃P
1/4(5).

In contrast to SP(5), there are non-trivial lower bounds for mSP(5) for explicit monotone

functions 5 . However, this does not necessarily give a lower bound on SP(5), and in particular,

may not be a lower bound on the one-sided error quantum space complexity of 5 . However, lower

bounds on log mSP(5) or log mS̃P(5) do give lower bounds on the space complexity of quantum

algorithms obtained from monotone span programs, and as we will soon see, log mSP(5) and
log mS̃P(5) are lower bounds on the space complexity of monotone phase estimation algorithms,
described in Section 5.2. The strongest known lower bound on mSP(5) is the following:

Theorem 5.2 ([24]). There is an explicit Boolean function 5 : � → {0, 1} for � ⊆ {0, 1}= such that

log mSP(5) ≥ Ω(=).

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 28

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

Wewill adapt some of the techniques used in existing lower bounds on mSP to show a lower

bound on mS̃P(5) for some explicit 5 :

Theorem 5.3. There is an explicit Boolean function 5 : � → {0, 1} for � ⊆ {0, 1}= such that for any
constant �,

log mS̃P�(5) ≥ (log =)2−>(1).

In particular, this implies a lower bound of 2
(log =)2−>(1)

on mSP(5) for the function 5 in

Theorem 5.3. We prove Theorem 5.3 in Section 5.1. Theorem 5.3 implies that any quantum

algorithm for 5 obtained fromamonotone spanprogrammust have space complexity (log =)2−>(1),
which is slightly better than the trivial lower bound of Ω(log =). In Section 5.2, we describe

a more natural class of algorithms called monotone phase estimation algorithms such that

log mS̃P(5) is a lower bound on the quantum space complexity of any such algorithm computing

5 with bounded error. Then for the specific function 5 from Theorem 5.3, any monotone phase

estimation algorithm for 5 must use space (log =)2−>(1).

5.1 Monotone span program lower bounds

Our main tool in proving Theorem 5.3 will be the following.

Theorem 5.4. For any Boolean function 5 : � → {0, 1}, � ⊆ {0, 1}= , and any constant � ∈ [0, 1):

mS̃P�(5) ≥ max

"∈ℝ 5−1(0)× 5−1(1)
:‖"‖∞≤1

√
�-rank(")

max9∈[=] rank(" ◦ Δ9 ,1)
,

where Δ9 ,1[H, G] = 1 if H8 = 0 and G8 = 1, and 0 else.

When, � = 0, the right-hand side of the equation in Theorem 5.4 is the (monotone) rank
measure, defined in [25], and shown in [11] to lower bound monotone span program size. We

extend the proof for the � = 0 case to get a lower bound on approximate span program size. We

could also allow for partial matrices ", as in the non-monotone case (Lemma 4.6) but unlike

the non-monotone case, it is not necessary to consider partial matrices to get non-trivial lower

bounds.

Proof. Fix a monotone span program that �-approximates 5 with size mS̃P�(5). Let {〈$H | :

H ∈ 5 −1(0)} be optimal negative witnesses, and let {|FG〉 : G ∈ 5 −1(1)} be approximate positive

witnesses with

Π�(G)⊥ |FG〉

2 ≤ �

,−
. Letting Π9 ,1 denote the projector onto �9 ,1 , define

Λ9 =
∑

H∈ 5 −1(0)
|H〉〈$H |�Π9 ,H̄9

∑
G∈ 5 −1(1)

Π9 ,G 9 |FG〉〈G | =
∑

H∈ 5 −1(0):
H9=0

|H〉〈$H |�Π9 ,1

∑
G∈ 5 −1(1):
G 9=1

Π9 ,1 |FG〉〈G |,

so Λ9 has rank at most dim�9 , and so

∑
9∈[=] rank(Λ9) ≤ B(%) = mS̃P�(5). Furthermore, Λ9 is

only supported on (H, G) such that H 9 = 0 and G 9 = 1, so Λ9 ◦ Δ9 ,1 = Λ9 . Denoting the error of

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 29

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

|FG〉 as |err(G)〉 = Π�(G)⊥ |FG〉 =
∑
9:G 9=0

Π9 ,1 |FG〉, we have

〈H |
∑
9∈[=]

Λ9 |G〉 =
∑

9:H9=0,G 9=1

〈$H |�Π9 ,1 |FG〉 = 〈$H |�
∑
9:H9=0

Π9 ,1

∑
9:G 9=1

Π9 ,1 |FG〉

= 〈$H |�(|FG〉 − |err(G)〉) = 〈$H |�|FG〉 − 〈$H |�|err(G)〉������1 − 〈H |∑9∈[=]Λ9 |G〉

������ ≤ 1 − 1 +

〈$H |�

 ‖|err(G)〉‖ ≤
√
,−

√
�
,−

=
√
�.

Then for any " ∈ ℝ 5 −1(0)× 5 −1(1)
with ‖"‖∞ ≤ 1, we have:

" −" ◦ ∑
9∈[=]

Λ9

∞

≤ ‖"‖∞

� − ∑
9∈[=]

Λ9

∞

≤
√
�.

Thus

√
�-rank(") ≤ rank

©­«" ◦
∑
9∈[=]

Λ9
ª®¬ ≤

∑
9∈[=]

rank(" ◦Λ9)

=
∑
9∈[=]

rank(" ◦ Δ9 ,1 ◦Λ9) ≤
∑
9∈[=]

rank(" ◦ Δ9 ,1)rank(Λ9)

≤ mS̃P�(5)max

9∈[=]
rank(" ◦ Δ9 ,1). �

To show a lower bound on mS̃P(5) for some explicit 5 : {0, 1}= → {0, 1}, it turns out to be

sufficient to find some high approximate rank matrix " ∈ ℝ.×-
for finite sets - and ., and

a rectangle cover of ", Δ1 , . . . ,Δ= , where each Δ8 ◦" has low rank. Specifically, we have the

following lemma, which, with rank in place of approximate rank, has been used extensively in

previous monotone span program lower bounds.

Lemma 5.5. Let " ∈ ℝ.×- with ‖"‖∞ ≤ 1, for some finite sets - and . and -1 , . . . , -= ⊆ -,
.1 , . . . , .= ⊆ . be such that for all (G, H) ∈ - × ., there exists 9 ∈ [=] such that (G, H) ∈ -9 × .9 .
Define Δ9 ∈ {0, 1}.×- by Δ9[H, G] = 1 if and only if (H, G) ∈ .9 × -9 . There exists a monotone function
5 : � → {0, 1} for � ⊆ {0, 1}= such that for any constant � ∈ [0, 1):

mS̃P�(5) ≥
√
�-rank(")

max9∈[=] rank(" ◦ Δ9)
.

Proof. For each H ∈ ., define CH ∈ {0, 1}= by:

C
H

9
=

{
0 if H ∈ .9
1 else.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 30

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

Similarly, for each G ∈ -, define BG ∈ {0, 1}= by

BG9 =

{
1 if G ∈ -9
0 else.

For every (H, G) ∈ . × -, there is some 9 such that H 9 ∈ .9 and G 9 ∈ -9 , so it cannot be the case

that BG ≤ CH . Thus, we can define 5 as the unique monotone function such that 5 (B) = 1 for

every B ∈ {0, 1}= such that BG ≤ B for some G ∈ -, and 5 (C) = 0 for all C ∈ {0, 1}= such that

C ≤ CH for some H ∈ .. Then we can define a matrix "′ ∈ ℝ 5 −1(0)× 5 −1(1)
by "′[CH , BG] = "[H, G]

for all (H, G) ∈ . × -, and 0 elsewhere. We have �-rank("′) = �-rank(") for all �, and
rank("′ ◦ Δ9 ,1) = rank(" ◦ Δ9) for all 9. The result then follows from Theorem 5.4. �

We will prove Theorem 5.3 by constructing an " with high approximate rank, and a good

rectangle cover. Following [29] and [24], we will make use of a technique due to Sherstov for

proving communication lower bounds, called the pattern matrix method [30]. We begin with

some definitions.

Definition 5.6 (Fourier spectrum). For a real-valued function ? : {0, 1}< → ℝ, its Fourier

coefficients are defined, for each (⊆ [<]:

?̂(() = 1

2
<

∑
I∈{0,1}<

?(I)"((I),

where "((I) = (−1)
∑
8∈(I8 . It is easily verified that ? =

∑
(⊆[<] ?̂(()"(.

Definition 5.7 (Degree and approximate degree). The degree of a function ? : {0, 1}< → ℝ is

defined deg(?) = max{|(| : ?̂(() ≠ 0}. For any � ≥ 0, d̃eg�(?) = min{deg(?̃) : ‖? − ?̃‖∞ ≤ �}.

Pattern matrices, defined by Sherstov in [30], are useful for proving lower bounds in

communication complexity, because their rank and approximate rank are relatively easy to

lower bound. In [29], Robere, Pitassi, Rossman and Cook first used this analysis to give lower

bounds on mSP(5) for some 5 . We now state the definition, using the notation from [24], which

differs slightly from [30].

Definition 5.8 (Patternmatrix). For a real-valued function ? : {0, 1}< → ℝ, and a positive integer

�, the (<,�, ?)-pattern matrix is defined as � ∈ ℝ{0,1}
�<×([�]<×{0,1}<)

where for H ∈ {0, 1}�< ,
G ∈ [�]< , and F ∈ {0, 1}< ,

�[H, (G, F)] = ?(H |G ⊕ F),
where by H |G , we mean the <-bit string containing one bit from each �-sized block of H as

specified by the entries of G: (H(1)G1

, H
(2)
G2

, . . . , H
(<)
G<), where H(8) ∈ {0, 1}� is the 8-th block of H.

For comparison, what [30] calls an (=, C, ?)-pattern matrix would be a (C , =/C , ?)-pattern
matrix in our notation. As previously mentioned, a pattern matrix has the nice property that

its rank (or even approximate rank) can be bounded from below in terms of properties of the

Fourier spectrum of ?. In particular, the following is proven in [30]:

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 31

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Lemma 5.9. Let � be the (<,�, ?)-pattern matrix for ? : {0, 1}< → {−1,+1}. Then for any � ∈ [0, 1]
and � ∈ [0, �], we have:

rank(�) =
∑

(⊆[<]:?̂(()≠0

�|(| and �-rank(�) ≥ �d̃eg�(?) (� − �)
2

(1 + �)2 .

This shows that we can use functions ? of high approximate degree to construct pattern

matrices � ∈ ℝ{0,1}�<×([�]<×{0,1}<) of high approximate rank. To apply Lemma 5.5, we also need

to find a good rectangle cover of some �.

A 1-certificate for a function ? on {0, 1}< is an assignment
 : (→ {0, 1} for some (⊆ [<]
such that for any G ∈ {0, 1}< such that G 9 =
(9) for all 9 ∈ (, 5 (G) = 1. The size of a certificate is

|(|. The following shows how to use the certificates of ? to construct a rectangle cover of its

pattern matrix.

Lemma 5.10. Let ? : {0, 1}< → {−1,+1}, and suppose there is a set of ℓ certificates for ? of size at
most � such that every input satisfies at least one certificate. Then for any positive integer �, there exists
a function 5 : {0, 1}= → {0, 1} for = = ℓ (2�)� such that for any � ∈ (0, 1) and � ∈ [

√
�, 1]:

mS̃P�(5) ≥ Ω
(
(� −
√
�)2�d̃eg�(?)

)
.

Proof. For 8 = 1, . . . , ℓ , let
8 : (8 → {0, 1} for (8 ⊂ [<] of size |(8 | ≤ � be one of the ℓ certificates.

That is, for each 8, there is some E8 ∈ {−1,+1} such that for any G ∈ {0, 1}< , if G 9 =
8(9) for all
9 ∈ (8 , then ?(G) = E8 (so
8 is a E8-certificate).

We let � be the (<,�, ?)-pattern matrix, which has ‖�‖∞ = 1 since ? has range {−1,+1}. We

will define a rectangle cover as follows. For every 8 ∈ [ℓ], : ∈ [�](8 , and 1 ∈ {0, 1}(8 , define:

-8 ,:,1 = {(G, F) ∈ [�]< × {0, 1}< : ∀9 ∈ (8 , F 9 = 1 9 , G 9 = : 9}

.8 ,:,1 = {H ∈ {0, 1}�< : ∀9 ∈ (8 , H(9): 9 = 1 9 ⊕
8(9)}.

We first note that this is a rectangle cover. Fix any H ∈ {0, 1}�< , G ∈ [�]< and F ∈ {0, 1}< . First
note that for any 8, if we let 1 be the restriction of F to (8 , and : the restriction of G to (8 , we

have (G, F) ∈ -8 ,:,1 . This holds in particular for 8 such that
8 is a certificate for H |G ⊕ F, and by

assumption there is at least one such 8. For such an 8, we have H
(9)
G 9 ⊕ F 9 =
(9) for all 9 ∈ (8 , so

H ∈ .8 ,:,1 . Thus, we can apply Lemma 5.5.

Note that if (G, F) ∈ -8 ,:,1 , and H ∈ .8 ,:,1 , then (H |G ⊕ F)[9] = H
(9)
G 9 ⊕ F 9 =
8(9) for all 9 ∈ (8 ,

so ?(H |G ⊕ F) = E8 . Letting Δ8 ,:,1[H, (G, F)] = 1 if H ∈ .8 ,:,1 and (G, F) ∈ -8 ,:,1 , and 0 else, we

have that if H ∈ .8 ,:,1 and (G, F) ∈ -8 ,:,1 , (� ◦ Δ8 ,:,1)[H, (G, F)] = ?(H |G ⊕ F) = E8 , and otherwise,

(� ◦ Δ8 ,:,1)[H, (G, F)] = 0. Thus rank(� ◦ Δ8 ,:,1) = rank(E8Δ8 ,:,1) = 1. Then by Lemma 5.5, there

exists 5 : {0, 1}= → {0, 1} where = =
∑ℓ
8=1
(2�)|(8 | ≤ ℓ (2�)� such that:

mS̃P�(5) ≥
√
�-rank(�)

≥ �d̃eg�(?) (� −
√
�)2

(1 +
√
�)2

, by Lemma 5.9. �

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 32

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

We now prove Theorem 5.3, restated below.

Theorem 5.3. There is an explicit Boolean function 5 : � → {0, 1} for � ⊆ {0, 1}= such that for

any constant �,

log mS̃P�(5) ≥ Ω((log =)2−>(1)).

Proof. By [8, Theorem 38], there is a function ? with d̃eg
1/3(?) ≥ �(?)2−>(1), which is, up to the

>(1) in the exponent, the best possible separation between these two quantities. In particular, this

function has d̃eg
1/3(?) ≥ "2−>(1)

, and �(?) ≤ "1+>(1)
, where �(?) is the certificate complexity

of ?, for some parameter" (see [8] equations (64) and (65), where ? is referred to as �), and ? is

a function on "2+>(1)
variables (see [8], discussion above equation (64)). Thus, there are at most("2+>(1)

"1+>(1)
)
2
"1+>(1)

possible certificates of size "1+>(1)
such that each input satisfies at least one of

them.

Then by Lemma 5.10 there exists a function 5 : {0, 1}= → {0, 1} for = ≤
("2+>(1)

"1+>(1)
)
2
"1+>(1)(2�)"1+>(1)

such that for constant � < 1/36 and constant �,

log mS̃P�(5) ≥ Ω(d̃eg
1/3(?) log�) ≥ "2−>(1).

Then we have

log = ≤ log

(
"2+>(1)

"1+>(1)

)
+ log 2

"1+>(1) +"1+>(1)
log(2�) = $("1+>(1)

log") = "1+>(1).

Thus, log mS̃P�(5) ≥ (log =)2−>(1), and the result for any � follows using Corollary 3.9. �

Since for all total functions ?, d̃eg
1/3(?) ≤ �(?)2, where �(?) is the certificate complexity

of ?, Lemma 5.10 cannot prove a lower bound better than log mS̃P(?) ≥ (log =)2 for any =-bit
function. We state a more general version of Lemma 5.10 that might have the potential to prove

a better bound, but we leave this for future work.

Lemma 5.11. Fix ? : {0, 1}< → {−1,+1}. For 8 = 1, . . . , ℓ , let
8 : (8 → {0, 1} for (8 ⊆ [<] be a
partial assignment such that every I ∈ {0, 1}< satisfies at least one of the assignments. Let ?8 denote the
restriction of ? to strings I satisfying the assignment
8 . Then for every positive integer �, there exists a
function 5 : {0, 1}= → {0, 1}, where = = ∑ℓ

8=1
(2�)|(8 | such that for any � ∈ (0, 1) and � ∈ [

√
�, 1]:

mS̃P�(5) ≥ Ω
(

(� −
√
�)2�d̃eg�(?)

max8∈[ℓ]
∑
(⊆[<]\(8 :?̂8(()≠0

�|(|

)
.

To make use of this lemma, one needs a function ? of high approximate degree, such

that for every input, there is a small assignment that lowers the degree to something small.

This generalizes Lemma 5.10 because a certificate is an assignment that lowers the degree

of the remaining sub-function to constant. However, we note that a ? with these conditions

is necessary but may not be sufficient for proving a non-trivial lower bound, because while∑
(:?̂8(()≠0

�|(| ≥ �deg(?8)
, it may also be much larger if ?8 has a dense Fourier spectrum.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 33

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Proof. Let � be the (<,�, ?)-pattern matrix. Let {-8 ,:,1 ×.8 ,:,1}8 ,:,1 be the same rectangle covered

defined in the proof of Lemma 5.10, with the difference that since the
8 are no longer certificates,

the resulting submatrices of � may not have constant rank.

Let Δ8 ,:,1 =
∑
H∈.8 ,:,1 |H〉

∑
(G,F)∈-8 ,:,1 〈G, F |. Then

� ◦ Δ8 ,:,1 =
∑

H∈.8 ,:,1 ,(G,F)∈-8 ,:,1

?(H |G ⊕ F)|H〉〈G, F |.

Note that when H ∈ .8 ,:,1 and (G, F) ∈ -8 ,1,: , H |G ⊕ F satisfies
8 , so ?(H |G ⊕ F) = ?8(H′ |G′ ⊕ F′),
where H′, G′ and F′ are restrictions of H ∈ ({0, 1}�)< , G ∈ [�]< and F ∈ {0, 1}< to [<] \ (8 . Thus,
continuing from above, and rearranging registers, we have:

� ◦ Δ8 ,:,1 =
∑

H′∈({0,1}�)[<]\(8

∑
G′∈[�][<]\(8 ,
F′∈{0,1}[<]\(8

?8(H′ |G′ ⊕ F′)|H′〉〈G′, F′ | ⊗
∑

H̄∈({0,1}�)(8 :
H̄ |:=1⊕
8

| H̄〉〈:, 1 |

= �8 ⊗ �
2
(�−1)|(8 | ,1

where �8 is the (<,�, ?8)-pattern matrix, and �0,1 is the all-ones matrix of dimension 0 by 1,

which always has rank 1 for 0, 1 > 0. Thus

rank(� ◦ Δ8 ,:,1) = rank(�8)rank(�
2
(�−1)|(8 | ,1) = rank(�8) =

∑
(⊆[<]\(8 :?̂8(()≠0

�|(| ,

by [30]. This part of the proof follows [29, Lemma IV.6].

Then by Lemma 5.5 and Lemma 5.9, we have:

mS̃P�(5) ≥ Ω
(√

�-rank(�)
max8 ,:,1 rank(� ◦ Δ8 ,:,1)

)
≥ Ω

©­­«
(
�−
√
�

1+
√
�

)
2

�deg�(?)

max8
∑
(⊆[<]\(8 :?̂ 9(()≠0

�|(|

ª®®¬ . �

5.2 Monotone algorithms

In Theorem 5.3, we showed a non-trivial lower bound on log mS̃P(5) for some explicit monotone

function 5 . Unlike lower bounds on log S̃P(5), this does not give us a lower bound on the

quantum space complexity of 5 , however, at the very least it gives us a lower bound on the

quantum space complexity of a certain type of quantumalgorithm. Of course, this is naturally the

case, since a lower bound on mS̃P(5) gives us a lower bound on the quantum space complexity

of any algorithm for 5 that is obtained from a monotone span program. However, this is not the

most satisfying characterization, as it is difficult to imagine what this class of algorithms looks

like.

In this section, we will consider a more natural class of algorithms whose space complexity is

shown to be at least mS̃P(5), and in some cases mSP(5). We will call a quantum query algorithm

a phase estimation algorithm if it works by estimating the amplitude on |0〉 in the phase register

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 34

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

after running phase estimation of a unitary that makes one query. We assume that the unitary

for which we perform phase estimation is of the form*OG . This is without loss of generality,

because themost general form is a unitary*2OG*1, but we have (*2OG*1)C |#0〉 = *†
1
(*OG)C |#′

0
〉

where |#′
0
〉 = *1 |#0〉, and* = *1*2. The weight on a phase of |0〉 is not affected by this global

(C-independent)*†
1
. Thus, we define a phase estimation algorithm as follows:

Definition 5.12. A phase estimation algorithm A = (*, |#0〉, �,), ") for 5 : � → {0, 1}, � ⊆
{0, 1}= , is defined by (families of):

• a unitary* acting onℋ = span{| 9 , I〉 : 9 ∈ [=], I ∈ Z} for some finite setZ;

• an initial state |#0〉 ∈ ℋ ;

• a bound � ∈ [0, 1/2);

• positive integers) and " ≤ 1√
�
;

such that for any "′ ≥ " and)′ ≥), the following procedure computes 5 with bounded error:

1. Let Φ(G) be the algorithm that runs phase estimation of*OG on |#0〉 for)′ steps, and then

computes a bit |1〉� in a new register �, such that 1 = 0 if and only if the phase estimate

is 0.

2. Run "′ steps of amplitude estimation to estimate the amplitude on |0〉� after application

of Φ(G). Output 0 if the amplitude is > �.

The query complexity of the algorithm is $(")), and, the space complexity of the algorithm is

log dimℋ + log) + log" + 1.

We insist that the algorithm work not only for " and) but for any larger integers as well,

because we want to ensure that the algorithm is successful because " and) are large enough,

and not by some quirk of the particular chosen values. When � = 0, the algorithm has one-sided

error (see Lemma 5.18).

We remark on the generality of this form of algorithm. Any algorithm can be put into this

form by first converting it to a span program using the construction of Section 3.3 (Theorem 3.2),

and then compiling that into an algorithm using the construction of Section 3.2 (Theorem 3.1),

preserving both the time and space complexity, asymptotically. However, we will consider a

special case of this type of algorithm that is not fully general.

Definition 5.13. A monotone phase estimation algorithm is a phase estimation algorithm such

that if Π0(G) denotes the orthogonal projector onto the (+1)-eigenspace of *OG , then for any

G ∈ {0, 1}= , Π0(G)|#0〉 is in the (+1)-eigenspace of OG .

Let us consider what is “monotone” about this definition. The algorithm outputs 0 if |#0〉
has high overlap with the (+1)-eigenspace of*OG , i. e., Π0(G)|#0〉 is large. In a monotone phase

estimation algorithm, we know that the only contribution to Π0(G)|#0〉 is in the (+1)-eigenspace

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 35

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

of OG , which is exactly the span of | 9 , I〉 such that G 9 = 0. Thus, only queries that return 0 can

contribute to the algorithm rejecting.

As a simple example, Grover’s algorithm is a monotone phase estimation algorithm.

Specifically, let |#0〉 = 1√
=

∑=
9=1
| 9〉 and * = (2|#0〉〈#0 | − �). Then *OG is the standard Grover

iterate, and |#0〉 is in the span of e
8�
-eigenvectors of *OG with sin |� | =

√
|G |/=, so phase

estimation can be used to distinguish the case |G | = 0 from |G | ≥ 1. So Π0(G)|#0〉 is either 0,
when |G | ≠ 0, or |#0〉, when |G | = 0. In both cases, it is in the (+1)-eigenspace of OG .

It is clear that a monotone phase estimation algorithm can only decide a monotone function.

However, while any quantum algorithm can be converted to a phase estimation algorithm, it is

not necessarily the case that any quantum algorithm for a monotone function can be turned into

a monotone phase estimation algorithm (see Remark 5.17). Thus lower bounds on the quantum

space complexity of any monotone phase estimation algorithm for a monotone 5 do not imply

lower bounds on S* (5). Nevertheless, if we let mS* (5) represent the minimum quantum space

complexity of any monotone phase estimation algorithm for 5 , then a lower bound on mS* (5)
at least tells us that if we want to compute 5 with space less than said bound, we must use a

non-monotone phase estimation algorithm.

Similarly, we let mS1

* (5) denote the minimum quantum space complexity of any monotone

phase estimation algorithm with � = 0 that computes 5 (with one-sided error).

The main theorem of this section states that any monotone phase estimation algorithm for 5

with space (can be converted to a monotone span program of size 2
Θ(()

that approximates 5 , so

that lower bounds on mS̃P(5) imply lower bounds on mS* (5); and that any monotone phase

estimation algorithm with � = 0 and space (can be converted to a monotone span program

of size 2
Θ(()

that decides 5 (exactly) so that lower bounds on mSP(5) imply lower bounds on

mS1

* (5). These conversions also preserve the query complexity. We now formally state this

main result.

Theorem 5.14. LetA = (*, |#0〉, �,), ") be a monotone phase estimation algorithm for 5 with space
complexity (= log dimℋ + log)+ log"+1 and query complexity$()"). Then there is a monotone
span program with complexity $()") and size 2 dimℋ ≤ 2

(that approximates 5 . If � = 0, then this
span program decides 5 (exactly). Thus

mS* (5) ≥ log mS̃P(5) and mS1

* (5) ≥ log mSP(5).

We prove this theorem in Section 5.2.1. As a corollary, lower bounds on mSP(5), such as the

one from [24], imply lower bounds on mS1

* (5); and lower bounds on mS̃P(5) such as the one in

Theorem 5.3, imply lower bounds on mS* (5). In particular:

Corollary 5.15. Let 5 : {0, 1}= → {0, 1} be the function described in Theorem 5.3. Then mS* (5) ≥
(log =)2−>(1). Let , : {0, 1}= → {0, 1} be the function described in Theorem 5.2. Then mS1

* (,) ≥ Ω(=).

We emphasize that while this does not give a lower bound on the quantum space complexity

of 5 , or the one-sided quantum space complexity of ,, it does show that any algorithm that uses

(log =)2 space to solve 5 with bounded error, for 2 < 2, or >(=) space to solve , with one-sided

error, must be of a different form than that described in Definition 5.13.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 36

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

In a certain sense, monotone phase estimation algorithms completely characterize those

that can be derived from monotone span programs, because the algorithm we obtain from

compiling a monotone span program is a monotone phase estimation algorithm, as stated below

in Lemma 5.16. However, not all monotone phase estimation algorithms can be obtained by

compiling monotone span programs, and similarly, we might hope to show that an even larger

class of algorithms can be converted to monotone span programs, in order to give more strength

to lower bounds on mS* (5).

Lemma 5.16. Let % be an approximate monotone span program for 5 with size (and complexity �. Then
there is a monotone phase estimation algorithm for 5 with query complexity $(�) and space complexity
$(log (+ log�).

Proof. Fix a monotone span program, and assume it has been appropriately scaled. Without

loss of generality, we can let �9 = �9 ,1 = span{| 9 , I〉 : I ∈ Z9} for some finite set Z9 . Then,

OG = � − 2Π�(G), which is only true because the span program is monotone. Let* = 2Π
row(�)− �.

Then *OG = (2Πker(�) − �)(2Π�(G) − �) is the span program unitary, described in Section 3.2.

Then it is simple to verify that the algorithm described in [15, Lemma 3.6] (and referred to

in Section 3.2) is a phase estimation algorithm for 5 with query complexity $(�) and space

complexity $(log (+ log�).
The algorithm is a monotone phase estimation algorithm because * = 2Π

row(�) − � is
a reflection, and |#0〉 = |F0〉 = �+ |�〉 is in the (+1)-eigenspace of * , row(�). Since * is a

reflection, the (+1)-eigenspace of *OG is exactly (ker(�) ∩ �(G)) ⊕ (row(�) ∩ �(G)⊥), and so

Π0(G)|F0〉 ∈ row(�) ∩ �(G)⊥ ⊂ �(G)⊥. �

Remark 5.17. Wemention an example ofmonotone functions for which the best known quantum

algorithm, in terms of space complexity, is not a monotone phase estimation algorithm. Every

function can be expressed as a Boolean formula, and every monotone function can be expressed

as a monotone Boolean formula (a formula with no negation gates), but this might be much

larger than the smallest (non-monotone) formula for the function. For example, the function

XOR-SAT, defined in [13], can be computed by a circuit of depth $((log =)2), which means it has

a formula of size 2
$((log =)2)

, but its monotone formula complexity is 2
Ω(=�)

for some constant �.10
For any Boolean formula of size# , there exists a quantum algorithm that can evaluate it using

$(
√
#) queries, and$(log#) space [27, 18]. Since this algorithm is designed via span programs,

it is a phase estimation algorithm, and it is monotone if and only if the formula is monotone. For

a function for which there is a separation between the monotone and non-monotone formula

complexities, the smallest space quantum algorithm of this type will not be monotone. For

example, for XOR-SAT, we could use a quantum algorithm that evaluates a monotone formula

and has space complexity =�. This is a monotone phase estimation algorithm, but it is not

optimal. If we instead evaluate the optimal non-monotone formula, we get a quantum algorithm

(that is not monotone) with space complexity (log =)2. Of course, this does not rule out that

10If we pad XOR-SAT with 0s so that the input length goes from = to # = 2
2(log =)2

for some appropriate constant

2, then the formula size becomes linear in # , while the monotone formula size is still superpolynomial in # , scaling

like 2
2
�
√

log#
. We thank Robert Robere for this observation.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 37

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

there could be some other space-optimal quantum algorithm for this problem that is a monotone

phase estimation algorithm.

5.2.1 Monotone algorithms to (approximate) monotone span programs

In this section, we prove Theorem 5.14. Throughout this section, we fix a phase estimation

algorithmA = (*, |#0〉, �,), ") that computes 5 , with* acting onℋ . For any G ∈ {0, 1}= and

Θ ∈ [0,�], we let ΠΘ(G) denote the orthogonal projector onto the span of e
8�
-eigenvectors of

*OG for |� | ≤ Θ. We will let ΠG =
∑
9∈[=],I∈Z:G 9=1

| 9 , I〉〈9 , I |.
We begin by drawing some conclusions about the necessary relationship between the

eigenspaces of*OG and a function 5 whenever a monotone phase estimation computes 5 . The

proofs are somewhat dry and are deferred to Section 5.2.2.

Lemma 5.18. Fix a phase estimation algorithm with � = 0 that solves 5 with bounded error. Then if
5 (G) = 0,

‖Π0(G)|#0〉‖2 ≥
1

"2

,

and for any 3 <
√

8/�, if 5 (G) = 1, then

Π3�/)(G)|#0〉

2

= 0,

and the algorithm always outputs 1, so it has one-sided error.

Lemma 5.19. Fix a phase estimation algorithm with � ≠ 0 that solves 5 with bounded error. Then there
is some constant 2 > 0 such that if 5 (G) = 0,

‖Π0(G)|#0〉‖2 ≥ max{�(1 + 2), 1/"2}

and if 5 (G) = 1, for any 3 <
√

8/�,

Π3�/)(G)|#0〉

2 ≤ �

1 − 32�2

8

.

To prove Theorem 5.14, we will define a monotone span program %A as follows:

�true = span{| 9 , I〉 : 9 ∈ [=], I ∈ Z} = ℋ
�9 ,1 = �9 = span{| 9 , I, 1〉 : I ∈ Z}

�| 9 , I, 1〉 = 1

2

(| 9 , I〉 − (−1)1 | 9 , I〉) = | 9 , I〉

�| 9 , I〉 = (� −*†)| 9 , I〉
|�〉 = |#0〉. (5.1)

We first show that Π0(G)|#0〉 is (up to scaling) a negative witness for G, whenever it is

nonzero:

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 38

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

Lemma 5.20. For any G ∈ {0, 1}= , we have

F−(G) =
1

‖Π0(G)|#0〉‖2
.

In particular, Π0(G)|#0〉/‖Π0(G)|#0〉‖2 is an optimal negative witness for G when Π0(G)|#0〉 ≠ 0.

Proof. Suppose Π0(G)|#0〉 ≠ 0, and let |$〉 = Π0(G)|#0〉/‖Π0(G)|#0〉‖2. We will first show that

this is a negative witness, and then show that no negative witness can have better complexity.

First, we notice that

〈$ |�〉 = 〈$ |#0〉 =
〈#0 |Π0(G)|#0〉
‖Π0(G)|#0〉‖2

= 1.

Next,wewill see that 〈$ |�Π�(G) = 0. By themonotonephase estimationproperty,OGΠ0(G)|#0〉 =
Π0(G)|#0〉, and so OG |$〉 = |$〉, and thus ΠG |$〉 = 0, where ΠG is the projector onto | 9 , I〉 such
that G 9 = 1. Note that �(G) = span{| 9 , I, 1〉 : G 9 = 1, I ∈ Z} ⊕ span{| 9 , I〉 : 9 ∈ [=], I ∈ Z}. Thus
Π�(G) = Π�true

+ΠG ⊗ |1〉〈1|. We have:

〈$ |�(ΠG ⊗ |1〉〈1|) = 〈$ |ΠG = 0.

Since |$〉 is in the (+1)-eigenspace of *OG , we have *OG |$〉 = |$〉 so since OG |$〉 = |$〉,
* |$〉 = |$〉. Thus

〈$ |�Π�true
= 〈$ |(� −*†) ⊗ 〈1| = (〈$ | − 〈$ |) ⊗ 〈1| = 0.

Thus |$〉 is a zero-error negative witness for G. Next, we argue that it is optimal.

Suppose |$〉 is any optimal negative witness for G, with size F−(G). Then since 〈$ |ΠG =

〈$ |�(ΠG ⊗ |1〉〈1|) must be 0, OG |$〉 = (� − 2ΠG)|$〉 = |$〉, and since 〈$ |�Π�true
= 〈$ |(� −*†)

must be 0,* |$〉 = |$〉. Thus |$〉 is a 1-eigenvector of*OG , so

‖Π0(G)|#0〉‖2 ≥

 |$〉〈$ |‖ |$〉‖2

|#0〉

2

=
|〈$ |#0〉|2

‖|$〉‖2
=

1

‖|$〉‖2
.

We complete the proof by noticing that since 〈$ |�Π�true
= 0, we have 〈$ |� = 〈$ |〈1|, and

F−(G) = ‖〈$ |�‖2 = ‖|$〉‖2. �

Next we find approximate positive witnesses.

Lemma 5.21. For any Θ ≥ 0, the span program %A has approximate positive witnesses for any G with
error at most ‖ΠΘ(G)|#0〉‖2 and complexity at most 5�2

4Θ2
.

Proof. We first define a vector |E〉 by:

|E〉 = (� − (*OG)†)+(� −ΠΘ(G))|#0〉.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 39

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Note that � − (*OG)† is supported everywhere except the (+1)-eigenvectors of (*OG)†, which

are exactly the (+1)-eigenvectors of*OG . Thus, (� −ΠΘ(G))|#0〉 is contained in this support.

Next we define

|F〉 =
(
|#0〉 − (� −*†)|E〉

)
|1〉 + |E〉.

Then we have:

�|F〉 = |#0〉 − (� −*†)|E〉 + (� −*†)|E〉 = |#0〉 = |�〉.

So |F〉 is a positive witness, and we next compute its error for G:

Π�(G)⊥ |F〉

2

=

ΠḠ

(
|#0〉 − (� −*†)|E〉

)

2

=

ΠḠ |#0〉 −ΠḠ(� −*†)(� − (*OG)†)+(� −ΠΘ(G))|#0〉

2

.

Above, ΠḠ = � −ΠG . We now observe that

ΠḠ(� − OG*†) = ΠḠ

(
ΠḠ − (ΠḠ −ΠG)*†

)
= ΠḠ(� −*†).

Thus, continuing from above, we have:

Π�(G)⊥ |F〉

2

=

ΠḠ |#0〉 −ΠḠ(� − OG*†)(� − OG*†)+(� −ΠΘ(G))|#0〉

2

= ‖ΠḠ |#0〉 −ΠḠ(� −ΠΘ(G))|#0〉‖2 = ‖ΠḠΠΘ(G)|#0〉‖2

≤ ‖ΠΘ(G)|#0〉‖2 .

Now we compute the complexity of |F〉. First, let*OG =
∑
9 e
8�9 |� 9〉〈� 9 | be the eigenvalue

decomposition of*OG . Then

(� − (*OG)†)+ =
∑
9:�9≠0

1

1 − e
−8�9
|� 9〉〈� 9 |

and � −ΠΘ(G) =
∑

9:|�9 |>Θ
|� 9〉〈� 9 |.

We can thus bound ‖|E〉‖2:

‖|E〉‖2 =

(� − (*OG)†)+(� −ΠΘ(G))|#0〉

2

=

 ∑
9:|�9 |>Θ

1

1 − e
−8�9
〈� 9 |#0〉|� 9〉

2

=
∑

9:|�9 |>Θ

1

4 sin
2
�9
2

|〈� 9 |#0〉|2 ≤
�2

4Θ2

.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 40

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

Next, using OG + 2ΠG = � − 2ΠG + 2ΠG = �, we compute

|#0〉 − (� −*†)|E〉

2

=

|#0〉 − (� − OG*† − 2ΠG*

†)(� − OG*†)+(� −ΠΘ(G))|#0〉

2

=

|#0〉 − (� −ΠΘ(G))|#0〉 + 2ΠG*

†(� − (*OG)†)+(� −ΠΘ(G))|#0〉

2

≤ ©­«‖ΠΘ(G)|#0〉‖ + 2

ΠG*
†

∑
9:|�9 |>Θ

1

1 − e
−8�9
〈� 9 |#0〉|� 9〉

ª®¬
2

≤ ©­«‖ΠΘ(G)|#0〉‖ + 2

√√ ∑
9:|�9 |>Θ

1

4 sin
2
�9
2

|〈� 9 |#0〉|2ª®¬
2

≤
(
‖ΠΘ(G)|#0〉‖ +

�
Θ
‖(� −ΠΘ(G))|#0〉‖

)
2

≤ �2

Θ2

.

Then we have the complexity of |F〉,

‖|F〉‖2 =

|#0〉 − (� −*†)|E〉

2 + ‖|E〉‖2

≤ �2

Θ2

+ �2

4Θ2

=
5�2

4Θ2

. �

We conclude with the following two corollaries, whose combination gives Theorem 5.14.

Corollary 5.22. LetA = (*, |#0〉, 0,), ") be a monotone phase estimation algorithm for 5 with space
complexity (= log dimℋ + log)+ log"+1 and query complexity$()"). Then there is a monotone
span program that decides 5 (exactly) whose size is 2 dimℋ ≤ 2

(and whose complexity is $()").

Proof. If 5 (G) = 0, then by Lemma 5.18, we have ‖Π0(G)|#0〉‖2 ≥ 1

"2
, so by Lemma 5.20,

F−(G) ≤ "2
. Thus,− ≤ "2

.

If 5 (G) = 1, then by Lemma 5.18, we have

Π
2/)(G)|#0〉

2

= 0, so by Lemma 5.21, there’s an

exact positive witness for G with complexity $()2). Thus,+ ≤ $()2), and so the span program

%A from (5.1) has complexity$()"). The size of the span program %A is dim� = 2 dimℋ . �

Corollary 5.23. Let A = (*, |#0〉, �,), ") be a monotone phase estimation algorithm for 5 with
space complexity (= log dimℋ + log) + log" + 1 and query complexity $()"). Then there is a
constant � ∈ (0, 1) such that there exists a monotone span program that �-approximates 5 whose size is
2 dimℋ ≤ 2

(and whose complexity is $()").

Proof. If 5 (G) = 0, then by Lemma 5.19, we have ‖Π0(G)|#0〉‖2 > �(1+ 2) for some constant 2 > 0.

Thus, by Lemma 5.20,,− ≤ 1

(1+2)� .

If 5 (G) = 1, then by Lemma 5.21, setting Θ = 3�/) for 3 = 2

�

√
2

1+2 , (where 2 is the constant

from above), by Lemma 5.21 there is an approximate positive witness for G with error

4G =

Π

2

√
2

1+2 /)
(G)|#0〉

2

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 41

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

and complexity $()2). By Lemma 5.19, we have

4G ≤
�

1 − 32�2

8

=
�

1 − 2
2(1+2)

=
�(1 + 2)

1 + 2 − 2/2 ≤
1

1 + 2/2
1

,−
.

Thus, letting � = 1

1+2/2 < 1, we have that %A �-approximates 5 . Since the positive witness

complexity is $()2), and by Lemma 5.19, we also have,− ≤ $("2), the complexity of %A is

$()"). The size of %A is dim� = 2 dimℋ . �

5.2.2 Proofs of Lemma 5.18 and Lemma 5.19

We will prove the lemmas as a collection of claims. Fix)′ ≥) and "′ ≥ " with which to

run the algorithm. Suppose Φ(G) outputs |#(G)〉 = √?G |0〉� |Φ0(G)〉 +
√

1 − ?G |1〉� |Φ1(G)〉, and
let ?̃ denote the estimate output by the algorithm. We will let *OG =

∑
9 e
8�9(G) |�G

9
〉〈�G

9
| be an

eigenvalue decomposition.

Claim 5.24. If 5 (G) = 0 then ‖Π0(G)|#0〉‖2 ≥ 1

"2
.

Proof. Since the algorithm computes 5 with bounded error, the probability of accepting G is at

most 1/3, so ?̃ ≤ � with probability at most 1/3.
Amplitude estimation is just phase estimation of a unitary ,Φ such that |#(G)〉 is in the

span of e
±28�G

-eigenvectors of,Φ, where ?G = sin
2 �G , �G ∈ [0,�/2) [7]. One can show that the

probability of outputting an estimate ?̃ = 0 is sin
2("′�G)/("′2 sin

2(�G)), so

1

3

≥ sin
2("′�G)

"′2 sin
2(�G)

.

If "′�G ≤ �
2
, then this would give:

1

3

≥ (2"
′�G/�)2

"′2�2

G

=
4

�2

,

which is a contradiction. Thus, we have:

"′�G >
�
2

⇒ 2�G
�

>
1

"′
⇒ sin�G >

1

"′
⇒ √

?G >
1

"′
.

Since Φ(G) is the result of running phase estimation, we have

?G =
∑
9

|〈�G9 |#0〉|2
sin

2()′�9(G)/2)
)′2 sin

2(�9(G)/2)
≤ ‖ΠΘ(G)|#0〉‖2 +

�2

)′2Θ2

,

for any Θ. In particular, if Δ is less than the spectral gap of *OG , we have ‖ΠΔ(G)|#0〉‖ =
‖Π0(G)|#0〉‖, so

1

"′2
< ‖Π0(G)|#0〉‖2 +

�2

)′2Δ2

.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 42

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

This is true for any choices)′ ≥) and "′ ≥ ", so we must have:

1

"2

≤ ‖Π0(G)|#0〉‖2 . �

Claim 5.25. If 5 (G) = 1 and � = 0, then for any 3 <
√

8

� ,

Π3�/)(G)|#0〉

2

= 0.

Proof. Suppose towards a contradiction that

Π3�/)(G)|#0〉

2

> 0. Then ?G > 0, and some

sufficiently large "′ ≥ " would detect this and cause the algorithm to output 0, so we must

actually have

Π3�/)(G)|#0〉

2

= 0. In fact, in order to sure that no large enough value"′ detects
amplitude > 0 on |0〉�, we must have ?G = 0 whenever 5 (G) = 1. That means that when 5 (G) = 1,

the algorithm never outputs 0, so the algorithm has one-sided error. �

Claim 5.26. There is some constant 2 such that if 5 (G) = 0 and � > 0 then ‖Π0(G)|#0〉‖2 > �(1 + 2).

Proof. Recall that ?̃ ∈ {sin
2(�</"′) : < = 0, . . . , "′ − 1}. We will restrict our attention to

choices "′ such that for some integer 3,

sin
2
3�
"′
≤ � < sin

2
(3 + 1/3)�

"′
.

To see that such a choice exists, let � be such that � = sin
2 �, and note that the condition holds as

long as 3 ≤ �"′
� < 3 + 1/3 for some 3, which is equivalent to saying that b 3�"′

� c = 0 mod 3. If

 = b 1

2

�
3�c, then for any "′ ≥ ", and ℓ ≥ 0, define:

"ℓ = "
′ + ℓ .

Then for any ℓ > 0,

3�
�
"ℓ −

3�
�
"ℓ−1 =

3�
�
 ∈

[
1

2

− 3�
�
,
1

2

]
,

so there must be one ℓ ∈ {0, . . . , 6} such that b 3�
� "ℓ e = 0 mod 3. In particular, there is some

choice "ℓ satisfying the condition such that (using some "′ ≤ 1√
�
):

√
�"ℓ ≤

√
�

(
1√
�
+ 6

�
6�

)
= 1 + � sin �

�
≤ 1 + �. (5.2)

We will use this value as our "′ for the remainder of this proof.

Let ?G = sin
2 �G for �G ∈ [0,�/2]. Let I be an integer such that Δ = �G −�I/"′ has |Δ| ≤ �

2"′ .

Then the outcome ?̃ = sin
2 �I
"′ has probability:

1

"′2

�����"′−1∑
C=0

e
82C(�G−�I/"′)

�����
2

=
1

"′2

�����"′−1∑
C=0

e
82CΔ

�����
2

=
sin

2("′Δ)
"′2 sin

2 Δ
≥ 4

�2

,

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 43

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

since |"′Δ| ≤ �
2
. Thus, by correctness, we must have sin

2(�I/"′) > � ≥ sin
2 3�
"′ . Thus I > 3, so

(3 + 1)�
"′

≤ I�
"′

= �G − Δ ≤ �G +
�

2"′
.

Thus:

(3 + 1/3)�
"′

+ 2�
3"′

≤ �G +
�

2"′

sin

(
(3 + 1/3)�

"′
+ �

6"′

)
≤ sin�G

sin

(
(3 + 1/3)�

"′

)
cos

�
6"′
+ cos

(
(3 + 1/3)�

"′

)
sin

�
6"′

≤ √?G

√
�

√
1 − sin

2
�

6"′
+
√

1 − � sin

�
6"′

≤ √?G

When sin
2 �

6"′ ≤ 1 − �, which we can assume, the above expression is minimized when sin
2 �

6"′

is as small as possible. We have, using "′ ≤ 1+�√
�
, from (5.2):

sin
2

�
6"′

≥ 4

36"′2
≥ �

9(1 + �)2 .

Thus, continuing from above, letting : = 1

9(1+�)2 , we have:

√
�
√

1 − :� +
√

1 − �
√
:� ≤ √?G

�(1 − :�) + (1 − �):� + 2�
√
:(1 − �)(1 − :�) ≤ ?G

Next, notice that (1 − :�)(1 − �) is minimized when � = 1+:
2:

, but � ≤ 1

2
< 1+:

2:
, so we have, using

: < 1 and � ≤ 1/2:

�(1 + :(1 − 2�) + 2

√
:
√
(1 − :/2)(1 − 1/2)) ≤ ?G

�(1 + 0 +
√
:) ≤ ?G .

Since Φ(G) is the result of running phase estimation of*OG for)′ ≥) steps, we have:

?G =
∑
9

|〈�G9 |#0〉|2
sin

2()
′�9(G)

2
)

()′)2 sin
2(�9(G)

2
)
,

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 44

http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

so in particular, for any Θ ∈ [0,�), we have

?G ≤ ‖ΠΘ(G)|#0〉‖2 +
∑

9:|�9(G)|>Θ
|〈�G9 |#0〉|2

1

()′)2 sin
2(Θ

2
)
.

≤ ‖ΠΘ(G)|#0〉‖2 + ‖(� −ΠΘ(G))|#0〉‖2
�2

()′)2Θ2

.

In particular, for any Θ < Δ where Δ is the spectral gap of *OG , we have ‖ΠΘ(G)|#0〉‖ =
‖Π0(G)|#0〉‖, so for any)′ ≥), we have

‖Π0(G)|#0〉‖2 +
�2

()′)2Δ2

≥ ?G ≥ �(1 +
√
:).

Since this holds for any)′ ≥), we get

‖Π0(G)|#0〉‖2 ≥ �(1 +
√
:).

The proof is completed by letting 2 =
√
:. �

Claim 5.27. If 5 (G) = 1 and � > 0 then

Π3�/)(G)|#0〉

2 (1 − 32�2/8) ≤ �.

Proof. If |�〉 is an e
8�
-eigenvector of*OG for some |� | ≤ 3�/) <

√
8/), then the probability of

measuring 0 in the phase register upon performing) steps of phase estimation is:

?G(�) :=
1

)2

�����)−1∑
C=0

e
8C�

�����2 = sin
2)�

2

)2
sin

2 �
2

.

Let �(G) = 1 − sin
2 G
G2

for any G. It is simple to verify that �(G) ≤ G2/2 for any G, and �(G) ∈ [0, 1]
for any G. So we have:

?G(�) ≥
()�/2)2(1 − �()�/2))
)2(�/2)2(1 − �(�/2)) ≥ 1 − �()�/2) ≥ 1 −)

2�2

8

.

Thus, we conclude that

?G ≥

Π3�/)(G)|#0〉

2

(
1 −)

2

8

32�2

)2

)
=

Π3�/)(G)|#0〉

2

(
1 − 3

2�2

8

)
.

If this is > �, then with some sufficiently large "′ ≥ ", amplitude estimation would detect this

and cause the algorithm to output 0 with high probability. �

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 45

http://dx.doi.org/10.4086/toc

STACEY JEFFERY

Acknowledgements

I am grateful to Tsuyoshi Ito for discussions that led to the construction of approximate span

programs from two-sided error quantum algorithms presented in Section 3.3, and to Alex

B. Grilo and Mario Szegedy for insightful comments. I am grateful to Robin Kothari for pointing

out the improved separation between certificate complexity and approximate degree in [8],

which led to an improvement in from (log =)7/6 (using [1]) to (log =)2−>(1) in Theorem 5.3. I thank

Robert Robere for pointing me to a separation between formula size and monotone formula

size for XOR-SAT. Finally, I thank the anonymous reviewers, whose feedback has improved the

presentation of these results.

References

[1] Scott Aaronson, Shalev Ben-David, and Robin Kothari: Separations in query com-

plexity using cheat sheets. In Proc. 48th STOC, pp. 863–876. ACM Press, 2016.

[doi:10.1145/2897518.2897644, arXiv:1511.01937, ECCC:TR15-175] 6, 46

[2] Noga Alon, Troy Lee, Adi Schraibman, and Santosh Vempala: The approximate rank of a

matrix and its algorithmic applications. In Proc. 45th STOC, pp. 675–684. ACM Press, 2013.

[doi:10.1145/2488608.2488694, ECCC:TR12-169] 8

[3] Andris Ambainis: Quantum lower bounds by quantum arguments. J. Comput. System
Sci., 64(4):750–767, 2002. Preliminary version in STOC’00. [doi:10.1006/jcss.2002.1826,

arXiv:quant-ph/0002066] 11

[4] Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern Approach. Cambridge

Univ. Press, 2009. Book. 4

[5] László Babai, Anna Gál, and Avi Wigderson: Superpolynomial lower bounds formonotone

span programs. Combinatorica, 19(3):301–319, 1999. [doi:10.1007/s004930050058] 4, 5, 25

[6] Howard Barnum, Michael E. Saks, and Mario Szegedy: Quantum query complexity and

semi-definite programming. In Proc. 18th IEEE Conf. on Comput. Complexity (CCC’03), pp.
179–193. IEEE Comp. Soc., 2003. [doi:10.1109/CCC.2003.1214419] 11

[7] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp: Quantum amplitude

amplification and estimation. In Samual J. Lomonaca and Howard E. Brandt, editors,

Quantum Computation and Quantum Information: A Millennium Volume, pp. 53–74. Amer.

Math. Soc., 2002. [doi:10.1090/conm/305, arXiv:quant-ph/0005055] 10, 42

[8] Mark Bun and Justin Thaler: A nearly optimal lower bound on the approximate

degree of ��0
. SIAM J. Comput., 49(4):59–96, 2020. Preliminary version in FOCS’17.

[doi:10.1137/17M1161737, arXiv:1703.05784, ECCC:TR17-051] 6, 33, 46

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 46

http://dx.doi.org/10.1145/2897518.2897644
http://arxiv.org/abs/1511.01937
https://eccc.weizmann.ac.il/report/2015/175
http://dx.doi.org/10.1145/2488608.2488694
https://eccc.weizmann.ac.il/report/2012/169
https://doi.org/10.1145/335305.335394
http://dx.doi.org/10.1006/jcss.2002.1826
http://arxiv.org/abs/quant-ph/0002066
https://theory.cs.princeton.edu/complexity/book.pdf
http://dx.doi.org/10.1007/s004930050058
http://dx.doi.org/10.1109/CCC.2003.1214419
http://dx.doi.org/10.1090/conm/305
http://arxiv.org/abs/quant-ph/0005055
https://doi.org/10.1109/FOCS.2017.10
http://dx.doi.org/10.1137/17M1161737
http://arxiv.org/abs/1703.05784
https://eccc.weizmann.ac.il/report/2017/051
http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

[9] Bill Fefferman and Cedric Yen-Yu Lin: A complete characterization of unitary quan-

tum space. In Proc. 9th Innovations in Theoret. Comp. Sci. Conf. (ITCS’18), pp. 4:1–21.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. [doi:10.4230/LIPIcs.ITCS.2018.4,

arXiv:1604.01384] 7

[10] Bill Fefferman and Zachary Remscrim: Eliminating intermediate measurements in space-

bounded quantum computation. In Proc. 53rd STOC, pp. 1343–1356. ACM Press, 2021.

[doi:10.1145/3406325.3451051, arXiv:2006.03530, ECCC:TR20-088] 2, 9

[11] Anna Gál: A characterization of span program size and improved lower bounds for

monotone span programs. Comput. Complexity, 10(4):277–296, 2001. Preliminary version in

STOC’98. [doi:10.1007/s000370100001] 4, 5, 25, 27, 29

[12] Uma Girish, Ran Raz, and Wei Zhan: Quantum logspace algorithm for powering matrices

with bounded norm. In Proc. 48th Internat. Colloq. on Automata, Languages, and Program-
ming (ICALP’21), pp. 73:1–20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2021.

[doi:10.4230/LIPIcs.ICALP.2021.73, arXiv:2006.04880, ECCC:TR20-087] 2, 9

[13] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov: Adventures in

monotone complexity and TFNP. In Proc. 10th Innovations in Theoret. Comp. Sci.
Conf. (ITCS’19), pp. 38:1–19. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[doi:10.4230/LIPIcs.ITCS.2019.38, ECCC:TR18-163] 37

[14] Peter Høyer, Troy Lee, and Robert Špalek: Negative weights make adversaries stronger.

In Proc. 39th STOC, pp. 526–535. ACM Press, 2007. [doi:10.1145/1250790.1250867] 11

[15] Tsuyoshi Ito and Stacey Jeffery: Approximate spanprograms.Algorithmica, 81(6):2158–2195,
2019. Preliminary version in ICALP’16. [doi:10.1007/s00453-018-0527-1, arXiv:1507.00432]

2, 9, 10, 12, 13, 14, 17, 18, 19, 37

[16] Stacey Jeffery: Frameworks for Quantum Algorithms. Ph.D. thesis, University of Waterloo,

2014. Available at http://uwspace.uwaterloo.ca/handle/10012/8710. 19

[17] Stacey Jeffery: Span programs and quantum space complexity. In Proc. 11th Innovations
in Theoret. Comp. Sci. Conf. (ITCS’20), pp. 4:1–37. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2020. [doi:10.4230/LIPIcs.ITCS.2020.4, arXiv:1908.04232] 1

[18] Stacey Jeffery and Shelby Kimmel: Quantum algorithms for graph connectivity and formula

evaluation. Quantum, 1:26:1–40, 2017. [doi:10.22331/q-2017-08-17-26, arXiv:1704.00765] 37

[19] Richard Jozsa, Barbara Kraus, Akimasa Miyake, and John Watrous: Matchgate and space-

bounded quantum computations are equivalent. Proc. Royal Soc. A, 466(2115):809–830, 2010.
[doi:10.1098/rspa.2009.0433] 7

[20] Mauricio Karchmer and Avi Wigderson: On span programs. In Proc. 8th IEEE
Conf. Structure in Complexity Theory (SCT’93), pp. 102–111. IEEE Comp. Soc., 1993.

[doi:10.1109/SCT.1993.336536] 2, 11, 12

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 47

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.4
http://arxiv.org/abs/1604.01384
http://dx.doi.org/10.1145/3406325.3451051
http://arxiv.org/abs/2006.03530
https://eccc.weizmann.ac.il/report/2020/088
https://doi.org/10.1145/276698.276855
http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.73
http://arxiv.org/abs/2006.04880
https://eccc.weizmann.ac.il/report/2020/087
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.38
https://eccc.weizmann.ac.il/report/2018/163
http://dx.doi.org/10.1145/1250790.1250867
https://doi.org/10.4230/LIPIcs.ICALP.2016.12
http://dx.doi.org/10.1007/s00453-018-0527-1
http://arxiv.org/abs/1507.00432
http://uwspace.uwaterloo.ca/handle/10012/8710
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.4
http://arxiv.org/abs/1908.04232
http://dx.doi.org/10.22331/q-2017-08-17-26
http://arxiv.org/abs/1704.00765
http://dx.doi.org/10.1098/rspa.2009.0433
http://dx.doi.org/10.1109/SCT.1993.336536
http://dx.doi.org/10.4086/toc

STACEY JEFFERY

[21] Alexei Y. Kitaev: Quantum measurements and the Abelian stabilizer problem. Electron.
Colloq. Comput. Complexity, TR96-003, 1996. [ECCC, arXiv:quant-ph/9511026] 9

[22] Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy: Quantum

query complexity of state conversion. In Proc. 52nd FOCS, pp. 344–353. IEEE Comp. Soc.,

2011. [doi:10.1109/FOCS.2011.75] 8

[23] Satyanarayana V. Lokam: Complexity lower bounds using linear algebra. Found. Trends
Theor. Comp. Sci., 4(1–2):1–155, 2009. [doi:10.1561/0400000011] 25

[24] Toniann Pitassi and Robert Robere: Strongly exponential lower bounds for monotone com-

putation. InProc. 49th STOC, pp. 1246–1255.ACMPress, 2017. [doi:10.1145/3055399.3055478,

ECCC:TR16-188] 5, 28, 31, 36

[25] Alexander A. Razborov: Applications of matrix methods to the theory of lower bounds in

computational complexity. Combinatorica, 10(1):81–93, 1990. [doi:10.1007/BF02122698] 4,
25, 27, 29

[26] Alexander A. Razborov: On submodular complexity measures. In Proc. London Math. Soc.
Symposium on Boolean Function Complexity, pp. 76–83, 1992. Author’s website. 27

[27] Ben W. Reichardt: Span programs and quantum query complexity: The general adversary

bound is nearly tight for every Boolean function. In Proc. 50th FOCS, pp. 544–551. IEEE
Comp. Soc., 2009. [doi:10.1109/FOCS.2009.55, arXiv:0904.2759] 2, 3, 10, 11, 12, 19, 37

[28] Ben W. Reichardt and Robert Špalek: Span-program-based quantum algorithm for

evaluating formulas. Theory of Computing, 8(13):291–319, 2012. Preliminary version in

STOC’08. [doi:10.4086/toc.2012.v008a013] 2, 11

[29] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook: Exponential

lower bounds for monotone span programs. In Proc. 57th FOCS, pp. 406–415. IEEE Comp.

Soc., 2016. [doi:10.1109/FOCS.2016.51, ECCC:TR16-064] 5, 6, 31, 34

[30] Alexander A. Sherstov: The pattern matrix method. SIAM J. Comput., 40(6):1969–2000,
2011. [doi:10.1137/080733644, arXiv:0906.4291] 6, 31, 34

[31] John Watrous: Space-bounded quantum complexity. J. Comput. System Sci., 59(2):281–326,
1999. [doi:10.1006/jcss.1999.1655] 6

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 48

https://eccc.weizmann.ac.il/report/1996/003
http://arxiv.org/abs/quant-ph/9511026
http://dx.doi.org/10.1109/FOCS.2011.75
http://dx.doi.org/10.1561/0400000011
http://dx.doi.org/10.1145/3055399.3055478
https://eccc.weizmann.ac.il/report/2016/188
http://dx.doi.org/10.1007/BF02122698
https://people.cs.uchicago.edu/~razborov/files/sub.pdf
http://dx.doi.org/10.1109/FOCS.2009.55
http://arxiv.org/abs/0904.2759
https://doi.org/10.1145/1374376.1374394
http://dx.doi.org/10.4086/toc.2012.v008a013
http://dx.doi.org/10.1109/FOCS.2016.51
https://eccc.weizmann.ac.il/report/2016/064
http://dx.doi.org/10.1137/080733644
http://arxiv.org/abs/0906.4291
http://dx.doi.org/10.1006/jcss.1999.1655
http://dx.doi.org/10.4086/toc

SPAN PROGRAMS AND QUANTUM SPACE COMPLEXITY

AUTHOR

Stacey Jeffery

Senior researcher

CWI & QuSoft

Amsterdam

The Netherlands

jeffery cwi nl

https://homepages.cwi.nl/~jeffery/

ABOUT THE AUTHOR

Stacey Jeffery started her academic career as an undergraduate philosophy student

at McMaster University, before reading the book Gödel, Escher, Bach: An Eternal

Golden Braid, after which she transfered to a Computer Science program at

the University of Waterloo. She got her Ph.D. in Computer Science from the

University of Waterloo under the supervision of Michele Mosca in 2014, before

spending two and a half years as a postdoc at Caltech at the Insitute for Quantum

Information and Matter. She now lives in Amsterdam with her husband and

two-year-old daughter, who enjoys bedtime stories read from Theory of Computing.

THEORY OF COMPUTING, Volume 18 (11), 2022, pp. 1–49 49

https://homepages.cwi.nl/~jeffery/
http://mcmaster.ca
https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach
https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach
http://uwaterloo.ca
http://caltech.edu
https://iqim.caltech.edu/
https://iqim.caltech.edu/
http://theoryofcomputing.org
http://dx.doi.org/10.4086/toc

	Introduction
	Preliminaries
	Span programs and quantum algorithms
	Span programs
	Proof of [claim:kappa]Claim 3.8

	From span programs to quantum algorithms
	From quantum algorithms to span programs

	Span programs and space complexity
	Monotone span programs and monotone algorithms
	Monotone span program lower bounds
	Monotone algorithms
	Monotone algorithms to (approximate) monotone span programs
	Proofs of [lem:phase-est-alg-delta-zero]Lemma 5.18 and [lem:phase-est-alg]Lemma 5.19

	References

