
THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35
www.theoryofcomputing.org

The Complexity of Computing the Optimal
Composition of Differential Privacy

Jack Murtagh∗ Salil Vadhan†

Received Month 1, 2012; Revised July 29, 2017; Published June 2, 2018

Abstract: In the study of differential privacy, composition theorems (starting with the
original paper of Dwork, McSherry, Nissim, and Smith (TCC’06)) bound the degradation
of privacy when composing several differentially private algorithms. Kairouz, Oh, and
Viswanath (ICML’15) showed how to compute the optimal bound for composing k arbitrary
(ε,δ)-differentially private algorithms. We characterize the optimal composition for the
more general case of k arbitrary (ε1,δ1), . . . ,(εk,δk)-differentially private algorithms where
the privacy parameters may differ for each algorithm in the composition. We show that
computing the optimal composition in general is #P-complete. Since computing optimal
composition exactly is infeasible (unless FP = #P), we give an approximation algorithm
that computes the composition to arbitrary accuracy in polynomial time. The algorithm is a
modification of Dyer’s dynamic programming approach to approximately counting solutions
to knapsack problems (STOC’03).

A conference version of this paper appeared in the Proceedings of the 13th IACR Theory of Cryptography Conference
(TCC), 2016-A [14].
∗Supported by NSF grant CNS-1237235 and a grant from the Sloan Foundation.
†Supported by NSF grant CNS-1237235, a grant from the Sloan Foundation, and a Simons Investigator Award.

ACM Classification: F.2

AMS Classification: 68Q17, 68W25, 68Q25

Key words and phrases: complexity theory, approximation algorithms, differential privacy, composition

© 2018 Jack Murtagh and Salil Vadhan
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2018.v014a008

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2018.v014a008

JACK MURTAGH AND SALIL VADHAN

1 Introduction

Differential privacy is a framework that allows statistical analysis of private databases while minimizing
the risks to individuals in the databases. The idea is that an individual should be relatively unaffected
whether he or she decides to join or opt out of a research dataset. More specifically, the probability
distribution of outputs of a statistical analysis of a database should be nearly identical to the distribution
of outputs on the same database with a single person’s data removed. Here the probability space is over
the coin flips of the randomized differentially private algorithm that handles the queries. To formalize
this, we call two databases D0,D1 with n rows each neighboring if they are identical on at least n−1
rows, and define differential privacy as follows.

Definition 1.1 (Differential Privacy [5, 4]). A randomized algorithm M is (ε,δ)-differentially private for
ε,δ ≥ 0 if for all pairs of neighboring databases D0 and D1 and all output sets S⊆ Range(M)

Pr[M(D0) ∈ S]≤ eε Pr[M(D1) ∈ S]+δ

where the probabilities are over the coin flips of the algorithm M.

In the practice of differential privacy, we generally think of ε as a small, non-negligible, constant
(e. g., ε = .1). We view δ as a “security parameter” that is cryptographically small (e. g., δ = 2−30). One
of the important properties of differential privacy is that if we run multiple distinct differentially private
algorithms on the same database, the resulting composed algorithm is also differentially private, albeit
with some degradation in the privacy parameters (ε,δ). In this paper, we are interested in quantifying
the degradation of privacy under composition. We will denote the composition of k differentially private
algorithms M1,M2, . . . ,Mk as (M1,M2, . . . ,Mk) where

(M1,M2, . . . ,Mk)(x) = (M1(x),M2(x), . . . ,Mk(x)) .

A handful of composition theorems already exist in the literature. The first basic result is the following.

Theorem 1.2 (Basic Composition [4]). For every ε ≥ 0, δ ∈ [0,1], and (ε,δ)-differentially private
algorithms M1,M2, . . . ,Mk, the composition (M1,M2, . . . ,Mk) satisfies (kε,kδ)-differential privacy.

This tells us that under composition, the privacy parameters of the individual algorithms “sum up,” so
to speak. We care about understanding composition because in practice we rarely want to release only
a single statistic about a dataset. Releasing many statistics may require running multiple differentially
private algorithms on the same database. Composition is also a very useful tool in algorithm design. Often,
new differentially private algorithms are created by combining several simpler algorithms. Composition
theorems help us analyze the privacy properties of algorithms designed in this way.

Theorem 1.2 shows a linear degradation in global privacy as the number of algorithms in the
composition (k) grows and it is of interest to improve on this bound. If we can prove that privacy
degrades more slowly under composition, we can get more utility out of our algorithms under the same
global privacy guarantees. Dwork, Rothblum, and Vadhan gave the following improvement on the basic
summing composition above [7].

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 2

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

Theorem 1.3 (Advanced Composition [7]). For every ε > 0,δ ,δ ′ > 0, k ∈ N, and (ε,δ)-differentially
private algorithms M1,M2, . . . ,Mk, the composition (M1,M2, . . . ,Mk) satisfies (εg,kδ +δ ′)-differential
privacy for

εg =
√

2k ln(1/δ ′) · ε + k · ε · (eε −1) .

Theorem 1.3 shows that privacy under composition degrades by a function of O(
√

k ln(1/δ ′)) which
is an improvement if δ ′ = 2−O(k). It can be shown that a degradation function of Ω(

√
k ln(1/δ)) is

necessary even for the simplest differentially private algorithms, such as randomized response [15].
Despite giving an asymptotically correct upper bound for the global privacy parameter, εg, Theo-

rem 1.3 is not exact. We want an exact characterization because, beyond being theoretically interesting,
constant factors in composition theorems can make a substantial difference in the practice of differential
privacy. Furthermore, Theorem 1.3 only applies to “homogeneous” composition where each individual
algorithm has the same pair of privacy parameters, (ε,δ). In practice we often want to analyze the
more general case where some individual algorithms in the composition may offer more or less privacy
than others. That is, given algorithms M1,M2, . . . ,Mk, we want to compute the best achievable privacy
parameters for (M1,M2, . . . ,Mk). Formally, we want to compute the following function.

OptComp(M1,M2, . . . ,Mk,δg) = inf{εg ≥ 0: (M1,M2, . . . ,Mk) is (εg,δg)-DP} .

It is convenient for us to view δg as given and then compute the best εg, but the dual formulation,
viewing εg as given, is equivalent (by binary search). Actually, we want a function that depends only on
the privacy parameters of the individual algorithms,

OptComp((ε1,δ1),(ε2,δ2), . . . ,(εk,δk),δg)

= sup{OptComp(M1,M2, . . . ,Mk,δg) : Mi is (εi,δi)-DP ∀i ∈ [k]}. (1.1)

In other words we want OptComp to give us the minimum possible εg that maintains privacy for
every sequence of algorithms with the given privacy parameters (εi,δi). A result from Kairouz, Oh, and
Viswanath [12] characterizes OptComp for the homogeneous case.

Theorem 1.4 (Optimal Homogeneous Composition [12]1). For every ε ≥ 0 and δ ∈ [0,1),

OptComp((ε,δ),(ε,δ), . . . ,(ε,δ)︸ ︷︷ ︸
k

,δg)

equals the least value of εg ≥ 0 such that

1
(1+ eε)k

k

∑
`=
⌈

εg+kε

2ε

⌉
(

k
`

)(
e`ε − eεge(k−`)ε

)
≤ 1−

1−δg

(1−δ)k .

1The phrasing of Theorem 1.4 is not exactly how it is presented in [12] (which only refers to εg of the form (k−2i)ε for
integer i), but this version can be deduced from the original.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 3

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

Empirically (see Section 6), this optimal bound provides a 30-40% savings in εg compared to
Theorem 1.3 (and a 20% savings compared to an improved asymptotic bound from [12]). The problem
remains to find the optimal composition behavior for the more general heterogeneous case. Kairouz,
Oh, and Viswanath also provide an upper bound for heterogeneous composition that generalizes the
O(
√

k ln(1/δ ′)) degradation found in Theorem 1.3 for homogeneous composition but do not comment
on how close it is to optimal.

1.1 Our results

We begin by extending the results of Kairouz, Oh, and Viswanath [12] to the general heterogeneous case.

Theorem 1.5 (Optimal Heterogeneous Composition). For all ε1, . . . ,εk ≥ 0 and δ1, . . . ,δk,δg ∈ [0,1),
OptComp((ε1,δ1),(ε2,δ2), . . . ,(εk,δk),δg) equals the least value of εg ≥ 0 such that

1

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i6∈S

εi
,0
}
≤ 1−

1−δg

∏
k
i=1 (1−δi)

. (1.2)

Theorem 1.5 exactly characterizes the optimal composition behavior for any arbitrary set of differen-
tially private algorithms. It also shows that optimal composition can be computed in time exponential in
k by computing the sum over S ⊆ {1, . . . ,k} by brute force. Of course in practice an exponential-time
algorithm is not satisfactory for large k. Our next result shows that this exponential complexity is
necessary.

Theorem 1.6. Computing OptComp is #P-complete, even on instances where δ1 = δ2 = · · ·= δk = 0
and ∑i∈[k] εi ≤ ε for any desired constant ε > 0.

Recall that #P is the class of counting problems associated with decision problems in NP. So
being #P-complete means that there is no polynomial-time algorithm for OptComp unless there is a
polynomial-time algorithm for counting the number of satisfying assignments of Boolean formulas (or
equivalently for counting the number of solutions of all NP problems). So there is almost certainly no
efficient algorithm for OptComp and therefore no analytic solution. Despite the intractability of exact
computation, we show that OptComp can be approximated efficiently.

Theorem 1.7. There is a polynomial-time algorithm that given rational ε1, . . . ,εk ≥ 0,δ1, . . .δk,δg ∈
[0,1), and η ∈ (0,1), outputs ε∗ satisfying

OptComp((ε1,δ1), . . . ,(εk,δk),δg)≤ ε
∗ ≤ OptComp((ε1,δ1), . . . ,(εk,δk),e−η/2 ·δg)+η .

The algorithm runs in time

O
(

k3 · ε · (1+ ε)

η
· log

(
k2 · ε · (1+ ε)

η

))
where ε = ∑i∈[k] εi/k, assuming constant-time arithmetic operations.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 4

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

Note that we incur a relative error of η in approximating δg and an additive error of η in approximating
εg. Since we always take εg to be non-negligible or even constant, we get a very good approximation when
η is polynomially small or even a constant. Thus, it is acceptable that the running time is polynomial in
1/η .

In addition to the results listed above, our proof of Theorem 1.5 also provides a somewhat simpler
proof of the Kairouz-Oh-Viswanath homogeneous composition theorem (Theorem 1.4 [12]). The proof
in [12] introduces a view of differential privacy through the lens of hypothesis testing and uses geometric
arguments. Our proof relies only on elementary techniques commonly found in the differential privacy
literature.

Practical application. The theoretical results presented here were motivated by our work on an applied
project called “Privacy Tools for Sharing Research Data”2 [10]. We are building a system that will
allow researchers with sensitive datasets to make differentially private statistics about their data available
through data repositories using the Dataverse3 platform [3, 13]. Part of this system is a tool that helps
both data depositors and data analysts distribute a global privacy budget across many statistics. Users
select which statistics they would like to compute and are given estimates of how accurately each statistic
can be computed. They can also redistribute their privacy budget according to which statistics they think
are most valuable in their dataset. We implemented the approximation algorithm from Theorem 1.7 and
integrated it with this tool to ensure that users get the most utility out of their privacy budget.

Utility-theoretic interpretation. As suggested to us by an anonymous referee, another natural perspec-
tive on composition is to maximize the “utility” u(M1, . . . ,Mk) provided by k differentially private algo-
rithms for a particular set of analysts subject to a global privacy constraint, OptComp(M1, . . . ,Mk,δg)≤ εg.
Our results can be interpreted as studying this problem in the special case where u(M1, . . . ,Mk) = 1 if and
only if for every i ∈ [k], Mi is a “randomized response” algorithm (see Definition 3.1) with privacy param-
eters at least εi,δi (recall that larger privacy parameters generally yield greater accuracy and hence greater
utility). Following [12], we show in Lemma 3.2 that randomized response achieves the worst-case bound
OptComp((ε1,δ1), . . . ,(εk,δk),δg) over all sequences of algorithms Mi that are (εi,δi)-DP. Studying this
utility maximization problem in greater generality is an interesting direction for future work. (See [1, 11]
for a general study of utility maximization under one-shot differential privacy, without composition.)

2 Technical preliminaries

A useful notation for thinking about differential privacy is defined below.

Definition 2.1. For two discrete random variables Y and Z taking values in the same output space S, the
δ -approximate max-divergence of Y and Z is defined as follows.

Dδ
∞(Y‖Z)≡max

S

[
ln

Pr[Y ∈ S]−δ

Pr[Z ∈ S]

]
.

2https://privacytools.seas.harvard.edu/
3https://dataverse.org/

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 5

https://privacytools.seas.harvard.edu/
https://dataverse.org/
http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

Notice that an algorithm M is (ε,δ) differentially private if and only if for all pairs of neighboring
databases, D0,D1, we have Dδ

∞(M(D0)‖M(D1))≤ ε . The standard fact that differential privacy is closed
under “post processing” [5, 6] now can be formulated as follows.

Fact 2.2. If f : S→ R is any randomized function, then

Dδ
∞(f (Y)‖ f (Z))≤ Dδ

∞(Y‖Z) .

Adaptive composition. The composition results in our paper actually hold for a more general model
of composition than the one described in the introduction. The model is called adaptive composition
and was formalized in [7]. We generalize their formulation to the heterogeneous setting where privacy
parameters may differ across different algorithms in the composition.

The idea is that instead of running k differentially private algorithms chosen all at once on a single
database, we can imagine an adversary adaptively engaging in a “composition game.” The game takes
as input a bit b ∈ {0,1} and privacy parameters (ε1,δ1), . . . ,(εk,δk). A randomized adversary A, tries
to learn b through k rounds of interaction as follows. On the i-th round of the game, A chooses an
(εi,δi)-differentially private algorithm Mi and two neighboring databases D(i,0),D(i,1). A then receives an
output yi = Mi(D(i,b)) where the internal randomness of Mi is independent of the internal randomness of
M1, . . . ,Mi−1. The choices of Mi,D(i,0), and D(i,1) may depend on y0, . . . ,yi−1 as well as the adversary’s
own randomness.

The outcome of this game is called the view of the adversary, V b which is defined to be (y1, . . . ,yk)
along with A’s coin tosses. The algorithms Mi and databases D(i,0),D(i,1) from each round can be
reconstructed from V b. Now we can formally define privacy guarantees under adaptive composition.

Definition 2.3. We say that the sequences of privacy parameters ε1, . . . ,εk ≥ 0, δ1, . . . ,δk ∈ [0,1) satisfy
(εg,δg)-differential privacy under adaptive composition if for every adversary A we have

Dδg
∞ (V 0‖V 1)≤ εg ,

where V b represents the view of A in composition game b with privacy parameter inputs

(ε1,δ1), . . . ,(εk,δk) .

Computing real-valued functions. Many of the computations we discuss involve irrational numbers
and we need to be explicit about how we model such computations on finite, discrete machines. Namely
when we talk about computing a function f : {0,1}∗→ R, what we really mean is computing f to any
desired number q bits of precision. More precisely, given x,q, the task is to compute a number y ∈Q such
that | f (x)− y| ≤ 1/2q. We measure the complexity of algorithms for this task as a function of |x|+q. In
order to reason about the complexity of OptComp, we will also require that the inputs be rational. So when
we talk about computing OptComp exactly, we actually mean given ε1, . . . ,εk ≥ 0,δ1, . . . ,δk,δg ∈ [0,1)
all rational and an integer q, compute ε∗ such that

|εg− ε
∗| ≤ 1

2q

where εg is the true optimal parameter with full precision.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 6

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

3 Characterization of OptComp

Following [12], we show that to analyze the composition of arbitrary (εi,δi)-DP algorithms, it suffices to
analyze the composition of the following simple variant of randomized response [15].

Definition 3.1 ([12]). Define a randomized algorithm M̃(ε,δ) : {0,1} → {0,1,2,3} as follows, setting
α = 1−δ .

Pr[M̃(ε,δ)(0) = 0] = δ , Pr[M̃(ε,δ)(1) = 0] = 0 ,
Pr[M̃(ε,δ)(0) = 1] = α · eε

1+eε , Pr[M̃(ε,δ)(1) = 1] = α · 1
1+eε ,

Pr[M̃(ε,δ)(0) = 2] = α · 1
1+eε , Pr[M̃(ε,δ)(1) = 2] = α · eε

1+eε ,
Pr[M̃(ε,δ)(0) = 3] = 0 , Pr[M̃(ε,δ)(1) = 3] = δ .

Note that M̃(ε,δ) is in fact (ε,δ)-DP. Kairouz, Oh, and Viswanath showed that M̃(ε,δ) can be used to
simulate the output of every (ε,δ)-DP algorithm on adjacent databases.

Lemma 3.2 ([12]). For every (ε,δ)-DP algorithm M and neighboring databases D0,D1, there exists a
randomized algorithm T such that T (M̃(ε,δ)(b)) is identically distributed to M(Db) for b = 0 and b = 1.

For the sake of completeness, we show how this lemma can be deduced from a recent characterization,
due to Bun and Steinke [2], of approximate max-divergence as equivalent to exact max-divergence
conditioned on events of probability 1−δ .

Lemma 3.3 ([2]). Let X and Y be random variables. The following are equivalent.

1. Dδ
∞(X‖Y)≤ ε and Dδ

∞(Y‖X)≤ ε .

2. There are probabilistic events E = E(X) and F = F(Y) such that

Pr[E] = Pr[F] = 1−δ and D0
∞(X |E ‖ Y |F)≤ ε and D0

∞(Y |F ‖ X |E)≤ ε .

3. There are probabilistic events E = E(X) and F = F(Y) such that

Pr[E] = Pr[F]≥ 1−δ and D0
∞(X |E ‖ Y |F)≤ ε and D0

∞(Y |F ‖ X |E)≤ ε .

Bun and Steinke originally proved Lemma 3.3 using Lemma 3.2, but we give a direct proof here that
is in a similar spirit to the proof of an alternate characterization of approximate max-divergence from [7]
(which uses statistical distance rather than conditioning on high-probability events). This avoids the need
for the hypothesis testing and geometric arguments used in [12] to establish their optimal composition
theorem. In an earlier version of our paper, we included a direct proof of Lemma 3.2, without going
through Lemma 3.3, but that proof was rather long and tedious, although using similar ideas to the proofs
below.

Proof of Lemma 3.3. It is immediate that statement 2 implies statement 3. To see that statement 3 implies
statement 1, note that assuming statement 3, for every set S we have

Pr[X ∈ S]≤ Pr[X ∈ S|E] ·Pr[E]+Pr[¬E]≤ (eε ·Pr[Y ∈ S|F]) ·Pr[F]+Pr[¬F]≤ eε ·Pr[Y ∈ S]+δ .

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 7

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

Thus we have Dδ
∞(X‖Y)≤ ε and by symmetry we also have Dδ

∞(Y‖X)≤ ε .
It remains to show that statement 1 implies statement 2, so assume that statement 1 holds. Finding

events E and F as in statement 2 is equivalent to finding functions e and f such that the following hold.

1. For all x, 0≤ e(x)≤ Pr[X = x] and 0≤ f (x)≤ Pr[Y = x].

2. For all x, e(x)≤ eε · f (x) and f (x)≤ eε · e(x).

3. ∑x e(x) = ∑x f (x) = 1−δ .

Indeed, the corresponding events E and F are defined by

Pr[E | X = x] = e(x)/Pr[X = x] and Pr[F | Y = x] = f (x)/Pr[Y = x] .

Then by Bayes’ Rule, the conditions above imply that

Pr[X = x|E] = Pr[E|X = x] ·Pr[X = x]
Pr[E]

=
e(x)

∑y e(y)
≤ eε · f (x)

∑y f (y)
= eε ·Pr[Y = x|F] .

Thus we have D0
∞(X |E ‖ Y |F)≤ ε and by symmetry we also have D0

∞(Y |F ‖ X |E)≤ ε .
We now proceed to defining the functions e and f . Define the following disjoint subsets of the

domain.

S = {x : Pr[X = x]> eε ·Pr[Y = x]} ,
T = {x : Pr[Y = x]> eε ·Pr[X = x]} .

Let
α = Pr[X ∈ S]− eε ·Pr[Y ∈ S]≥ 0 and β = Pr[Y ∈ T]− eε ·Pr[X ∈ T]≥ 0 .

We know that α,β ≤ δ , because Dδ
∞(X‖Y) ≤ ε and Dδ

∞(Y‖X) ≤ ε . We start by trying to define the
functions e and f as follows.

1. For x ∈ S, e(x) = eε ·Pr[Y = x] and for x /∈ S, e(x) = Pr[X = x].

2. For x ∈ T , f (x) = eε ·Pr[X = x] and for x /∈ T , f (x) = Pr[Y = x].

Figure 1 shows the functions e and f as defined above as well as the sets S and T and regions whose areas
are α and β . Notice that we have satisfied the conditions

0≤ e(x)≤ Pr[X = x] ,

0≤ f (x)≤ Pr[Y = x] ,

e(x)≤ eε · f (x) , and

f (x)≤ eε · e(x) .

It is also clear from the figure that ∑x e(x) = 1−α and ∑x f (x) = 1−β . Indeed, when we sum e(x) and

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 8

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY
P

ro
ba

bi
lit

y
M

as
s

Data Universe

eε Pr[X=x]

Pr[X=x]

eε Pr[Y=x]

Pr[Y=x]

α β

f(x) e(x)

S T

T'

Figure 1: Depiction of the functions e(x) (red) and f (x) (green). The solid black curves are the probability
mass functions of X and Y and the dashed curves are the solid curves scaled by a factor of eε . The regions
with areas α and β are shaded with vertical lines and the region above e(x) and below f (x) is shaded
with horizontal lines. The sets S, T , and T ′ from the proof are also depicted.

f (x) over all x, we obtain the following.

∑
x

e(x) = ∑
x∈S

e(x)+ ∑
x/∈S

e(x)

= ∑
x∈S

eε ·Pr[Y = x]+ ∑
x/∈S

Pr[X = x]

= eε ·Pr[Y ∈ S]+Pr[X /∈ S]

= Pr[X ∈ S]−α +Pr[X /∈ S]

= 1−α .

Similarly, we have

∑
x

f (x) = 1−β .

If α = β = δ , then we’re done. Otherwise, we will modify e and f to ensure that α = β and then we will
modify them again to achieve α = β = δ . Suppose without loss of generality that α > β . Then we will
reduce the function f on the set T ′ = {x : Pr[Y = x]> Pr[X = x]} ⊇ T (see Figure 1) to reduce the sum
∑x f (x) by α−β (while maintaining all the other conditions). The only condition that might be violated
if we reduce the function f is the one that e(x)≤ eε · f (x). So we just need to confirm that

∑
x∈T ′

(f (x)− e−ε · e(x))

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 9

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

is at least α−β to be able to reduce f as much as we need. We have

∑
x∈T ′

(f (x)− e−ε · e(x))≥ ∑
x∈T ′

(f (x)− e(x)) ,

so it suffices to show that the area of the region that is above e(x) and below f (x) is at least α−β . To see
this, we make the following observations.

1. The area of the region that is above Pr[X = x] and below Pr[Y = x] equals the area of the region
that is above Pr[Y = x] and below Pr[X = x].

∑
x∈T ′

(Pr[Y = x]−Pr[X = x]) = Pr[Y ∈ T ′]−Pr[X ∈ T ′]

= (1−Pr[Y /∈ T ′])− (1−Pr[X /∈ T ′])

= ∑
x/∈T ′

(Pr[X = x]−Pr[Y = x]) .

(This quantity is simply the total variation distance between X and Y .)

2. The area of the region that is above Pr[X = x] and below Pr[Y = x] equals β plus the area of the
region that is above e(x) and below f (x).

∑
x∈T ′

(Pr[Y = x]−Pr[X = x]) = ∑
x∈T ′

(Pr[Y = x]− f (x))+ ∑
x∈T ′

(f (x)−Pr[X = x])

= ∑
x∈T

(Pr[Y = x]− f (x))+ ∑
x∈T ′

(f (x)− e(x))

= β + ∑
x∈T ′

(f (x)− e(x)) .

3. The area of the region that is above Pr[Y = x] and below Pr[X = x] is at least α .

∑
x/∈T ′

(Pr[X = x]−Pr[Y = x]) ≥ ∑
x∈S

(Pr[X = x]− eε ·Pr[Y = x]

= α .

Putting it all together, we have

∑
x∈T ′

(f (x)− e−ε · e(x)) ≥ ∑
x∈T ′

(f (x)− e(x))

= ∑
x∈T ′

(Pr[Y = x]−Pr[X = x])−β

≥ α−β .

So we can afford to reduce the sum over all x of f (x) by α−β without violating the other conditions and
thus have found two functions e and f such that

1. for all x, 0≤ e(x)≤ Pr[X = x] and 0≤ f (x)≤ Pr[Y = x];

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 10

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

2. for all x, e(x)≤ eε · f (x) and f (x)≤ eε · e(x);

3. ∑x e(x) = ∑x f (x)≥ 1−δ .

Suppose ∑x e(x) = ∑x f (x) = 1−δ0 > 1−δ . Then we can scale them both by a multiplicative factor of
(1−δ0)/(1−δ) and achieve all the desired conditions.

Now we can prove Lemma 3.2 using Lemma 3.3.

Proof of Lemma 3.2. Let M be an (ε,δ)-DP algorithm and let D0,D1 be neighboring databases. Let
X ∼M(D0) and Y ∼M(D1) be random variables and note that

Dδ
∞(X‖Y)≤ ε and Dδ

∞(Y‖X)≤ ε

because M is (ε,δ)-DP. Lemma 3.3 says that there exist events E,F such that

D0
∞(X |E ‖ Y |F)≤ ε , D0

∞(Y |F ‖ X |E)≤ ε , and Pr[E] = Pr[F] = 1−δ .

Let R be the output space of M and fix r ∈ R. We define the simulating mechanism T : {0,1,2,3}→ R as
follows.

Pr[T (0) = r] = Pr[M(D0) = r|¬E] ,

Pr[T (1) = r] =
1

eε −1
· (eε Pr[M(D0) = r|E]−Pr[M(D1) = r|F]) ,

Pr[T (2) = r] =
1

eε −1
· (eε Pr[M(D1) = r|F]−Pr[M(D0) = r|E]) ,

Pr[T (3) = r] = Pr[M(D1) = r|¬F] .

Note that for each input to T , the probabilities of the outputs sum to 1 and are all non-negative because

D0
∞(X |E ‖ Y |F)≤ ε and D0

∞(Y |F ‖ X |E)≤ ε .

So the outputs of T form a valid probability distribution.
We now show that for all r ∈ R,

Pr[T (M̃(ε,δ)(0)) = r] = Pr[M(D0) = r] .

It follows that
T (M̃(ε,δ)(0))∼M(D0)

and by symmetry that
T (M̃(ε,δ)(1))∼M(D1) ,

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 11

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

which will complete the proof. We use the shorthand Pb(r|H) = Pr[M(Db) = r|H] for b ∈ {0,1} and any
event H. Fix r ∈ R.

Pr[T (M̃(ε,δ)(0)) = r]

= δ ·Pr[T (0) = r]+
(1−δ)eε

1+ eε
·Pr[T (1) = r]+

(1−δ)

1+ eε
·Pr[T (2) = r]+0

= δ ·P0(r|¬E)+
(1−δ)eε

e2ε −1
· (eεP0(r|E)−P1(r|F))+

(1−δ)

e2ε −1
· (eεP1(r|F)−P0(r|E))

= δ ·P0(r|¬E)+
(1−δ)eε

e2ε −1
· eε ·P0(r|E)−

(1−δ)

e2ε −1
·P0(r|E)

= δ ·P0(r|¬E)+(1−δ) ·P0(r|E)

= Pr[¬E] ·P0(r|¬E)+Pr[E] ·P0(r|E)

= Pr[M(D0) = r] .

So M̃(ε,δ) can simulate any (ε,δ) differentially private algorithm. Since it is known that post-
processing preserves differential privacy (Fact 2.2), it follows that to analyze the composition of arbitrary
differentially private algorithms, it suffices to analyze the composition of algorithms M̃(εi,δi).

Lemma 3.4. For all ε1, . . . ,εk ≥ 0, δ1, . . . ,δk, δg ∈ [0,1),

OptComp((ε1,δ1), . . . ,(εk,δk),δg) = OptComp(M̃(ε1,δ1), . . . ,M̃(εk,δk),δg) .

Proof. Since M̃(ε1,δ1), . . . ,M̃(εk,δk) are (ε1,δ1), . . . ,(εk,δk)-differentially private, we have

OptComp((ε1,δ1), . . . ,(εk,δk),δg) = sup{OptComp(M1, . . . ,Mk,δg) : Mi is (εi,δi)-DP ∀i ∈ [k]}
≥ OptComp(M̃(ε1,δ1), . . . ,M̃(εk,δk),δg) .

For the other direction, it suffices to show that for every M1, . . . ,Mk that are (ε1,δ1), . . . ,(εk,δk)-
differentially private, we have

OptComp(M1, . . . ,Mk,δg)≤ OptComp(M̃(ε1,δ1), . . . ,M̃(εk,δk),δg) .

That is,

inf{εg ≥ 0: (M1, . . . ,Mk) is (εg,δg)-DP} ≤ inf{εg ≥ 0: (M̃(ε1,δ1), . . . ,M̃(εk,δk)) is (εg,δg)-DP} .

So suppose (M̃(ε1,δ1), . . . ,M̃(εk,δk)) is (εg,δg)-DP. We will show that (M1, . . . ,Mk) is also (εg,δg)-DP.
Taking the infimum over εg then completes the proof.

We know from Lemma 3.2 that for every pair of neighboring databases D0,D1, there must exist
randomized algorithms T1, . . . ,Tk such that Ti(M̃(εi,δi)(b)) is identically distributed to Mi(Db) for all
i ∈ {1, . . . ,k}. By hypothesis we have

Dδg
∞

(
(M̃(ε1,δ1)(0), . . . ,M̃(εk,δk)(0))‖(M̃(ε1,δ1)(1), . . . ,M̃(εk,δk)(1))

)
≤ εg .

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 12

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

Thus by Fact 2.2 we have

Dδg
∞

(
(M1(D0), . . . ,Mk(D0))‖(M1(D1), . . . ,Mk(D1))

)
= Dδg

∞

(
(T1(M̃(ε1,δ1)(0)), . . . ,Tk(M̃(εk,δk)(0)))‖(T1(M̃(ε1,δ1)(1)), . . . ,Tk(M̃(εk,δk)(1)))

)
≤ εg .

Now we are ready to characterize OptComp for an arbitrary set of differentially private algorithms.

Theorem 1.5 (restated). For all ε1, . . . ,εk ≥ 0 and δ1, . . . ,δk,δg ∈ [0,1),

OptComp((ε1,δ1),(ε2,δ2), . . . ,(εk,δk),δg)

equals the least value of εg ≥ 0 such that

1

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i6∈S

εi
,0
}
≤ 1−

1−δg

∏
k
i=1 (1−δi)

.

Proof of Theorem 1.5. Given (ε1,δ1), . . . ,(εk,δk) and δg, let M̃k(b) denote the composition

(M̃(ε1,δ1)(b), . . . ,M̃(εk,δk)(b))

and let P̃k
b (x) be the probability mass function of M̃k(b), for b = 0 and b = 1. By Lemma 3.4,

OptComp((ε1,δ1), . . . ,(εk,δk),δg)

is the smallest value of εg such that

δg ≥ max
Q⊆{0,1,2,3}k

{
P̃k

0 (Q)− eεg · P̃k
1 (Q), P̃k

1 (Q)− eεg · P̃k
0 (Q)

}
.

Since M̃ is symmetric, we can instead consider the smallest value of εg such that

δg ≥ max
Q⊆{0,1,2,3}k

{
P̃k

0 (Q)− eεg · P̃k
1 (Q)

}
, (3.1)

without loss of generality. Given εg, the set S⊆ {0,1,2,3}k that maximizes the right-hand side is

S = S(εg) =
{

x ∈ {0,1,2,3}k
∣∣ P̃k

0 (x)≥ eεg · P̃k
1 (x)

}
.

We can further split S(εg) into S(εg) = S0(εg)∪S1(εg) with

S0(εg) =
{

x ∈ {0,1,2,3}k
∣∣ P̃k

1 (x) = 0
}
,

S1(εg) =
{

x ∈ {0,1,2,3}k
∣∣ P̃k

0 (x)≥ eεg · P̃k
1 (x), and P̃k

1 (x)> 0
}
.

Note that S0(εg)∩S1(εg) = /0. We have

P̃k
1 (S0(εg)) = 0 and P̃k

0 (S0(εg)) = 1−Pr[M̃k(0) ∈ {1,2,3}k] = 1−
k

∏
i=1

(1−δi) .

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 13

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

So

P̃k
0 (S(εg))− eεgP̃k

1 (S(εg)) = P̃k
0 (S0(εg))− eεgP̃k

1 (S0(εg))+ P̃k
0 (S1(εg))− eεgP̃k

1 (S1(εg))

= 1−
k

∏
i=1

(1−δi)+ P̃k
0 (S1(εg))− eεgP̃k

1 (S1(εg)) . (3.2)

Now we just need to analyze
P̃k

0 (S1(εg))− eεgP̃k
1 (S1(εg)) .

Notice that S1(εg)⊆ {1,2}k because for all x ∈ S1(εg), we have P̃0(x)> P̃1(x)> 0. So we can write

P̃k
0 (S1(εg))− eεg · P̃k

1 (S1(εg))

= ∑
y∈{1,2}k

max

{
∏

i : yi=1

(1−δi)eεi

1+ eεi
· ∏

i : yi=2

(1−δi)

1+ eεi
− eεg ∏

i : yi=1

(1−δi)

1+ eεi
· ∏

i : yi=2

(1−δi)eεi

1+ eεi
,0

}

=
k

∏
i=1

1−δi

1+ eεi ∑
y∈{0,1}k

max

{
e∑

k
i=1 εi

e∑
k
i=1 yiεi

− eεg · e∑
k
i=1 yiεi ,0

}
. (3.3)

Combining Equations (3.1), (3.2), and (3.3) together yields

δg ≥ P̃k
0 (S0(εg))− eεgP̃k

1 (S0(εg))+ P̃k
0 (S1(εg))− eεgP̃k

1 (S1(εg))

= 1−
k

∏
i=1

(1−δi)+
∏

k
i=1(1−δi)

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i6∈S

εi
,0
}
.

We have characterized the optimal composition for an arbitrary set of differentially private algorithms
(M1, . . . ,Mk) under the assumption that the algorithms are chosen in advance and all run on the same
database. Next we show that OptComp under this restrictive model of composition is actually equivalent
under the more general adaptive composition discussed in Section 2.

Theorem 3.5. The privacy parameters ε1, . . . ,εk ≥ 0, δ1, . . . ,δk ∈ [0,1), satisfy (εg,δg)-differential
privacy under adaptive composition for εg,δg ≥ 0 if and only if

OptComp((ε1,δ1), . . . ,(εk,δk),δg)≤ εg.

Proof. First suppose the privacy parameters ε1, . . . ,εk,δ1, . . . ,δk satisfy (εg,δg)-differential privacy under
adaptive composition. Then OptComp((ε1,δ1), . . . ,(εk,δk),δg) ≤ εg because adaptive composition is
more general than the composition defining OptComp.

Conversely, suppose OptComp((ε1,δ1), . . . ,(εk,δk),δg)≤ εg. In particular, this means

OptComp(M̃(ε1,δ1), . . . ,M̃(εk,δk),δg)≤ εg .

To complete the proof, we must show that the privacy parameters ε1, . . . ,εk,δ1, . . . ,δk satisfy (εg,δg)-
differential privacy under adaptive composition.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 14

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

Fix an adversary A. On each round i, A uses its coin tosses r and the previous outputs y1, . . . ,yi−1 to
select an (εi,δi)-differentially private algorithm Mi = Mr,y1,...,yi−1

i and neighboring databases

D0 = Dr,y1,...,yi−1
0 , D1 = Dr,y1,...,yi−1

1 .

Let V b be the view of A with the given privacy parameters under composition game b for b = 0 and b = 1.
Lemma 3.2 tells us that there exists an algorithm Ti = T r,y1,...,yi−1

i such that

Ti(M̃(εi,δi)(b))

is identically distributed to Mi(Db) for both b = 0,1 for all i ∈ [k]. Define T̂ (z1, . . . ,zk) for z1, . . . ,zk ∈
{0,1,2,3} as follows.

1. Randomly choose coins r for A.

2. For i = 1, . . . ,k, let yi← T r,y1,...,yi−1
i (zi).

3. Output (r,y1, . . . ,yk).

Notice that
T̂ (M̃(ε1,δ1)(b), . . . ,M̃(εk,δk)(b))

is identically distributed to V b for both b = 0,1. By hypothesis we have

Dδg
∞

(
(M̃(ε1,δ1)(0), . . . ,M̃(εk,δk)(0))‖(M̃(ε1,δ1)(1), . . . ,M̃(εk,δk)(1))

)
≤ εg .

Thus by Fact 2.2 we have

Dδg
∞

(
V 0‖V 1)= Dδg

∞

(
T̂ (M̃(ε1,δ1)(0), . . . ,M̃(εk,δk)(0))‖T̂ (M̃(ε1,δ1)(1), . . . ,M̃(εk,δk)(1))

)
≤ εg .

4 Hardness of OptComp

#P is the class of all counting problems associated with decision problems in NP. It is a set of functions
that count the solutions to some NP problem. More formally,

Definition 4.1. A function f : {0,1}∗→ N is in the class #P if there exists a polynomial p : N→ N and
a polynomial time algorithm M such that for every x ∈ {0,1}∗,

f (x) =
∣∣∣{y ∈ {0,1}p(|x|) : M(x,y) = 1

}∣∣∣ .
Definition 4.2. For functions f ,g ∈ #P, we say that f reduces to g (written f ≤ g) if there exists a
polynomial time algorithm M such that for all x ∈ {0,1}∗, M(x) = f (x) when M is given oracle access to
g. That is, evaluations of g can be done in one time step.

Definition 4.3. A function g is called #P-hard if every function f ∈#P can be computed in polynomial
time given oracle access to g. That is, evaluations of g can be done in one time step.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 15

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

If a function is #P-hard, then there is no polynomial-time algorithm for computing it unless there is
a polynomial-time algorithm for counting the solutions of all NP problems.

Definition 4.4. A function f is called #P-easy if there is some function g ∈ #P such that f can be
computed in polynomial time given oracle access to g.

If a function is both #P-hard and #P-easy, we say it is #P-complete. In this section we prove
Theorem 1.6.

Theorem 1.6 (restated). Computing OptComp is #P-complete, even on instances where δ1 = δ2 =
. . .= δk = 0 and ∑i∈[k] εi ≤ ε for any desired constant ε > 0.

Proving that computing OptComp is #P-complete can be broken into two steps: showing that it is
#P-easy and showing that it is #P-hard.

Lemma 4.5. Computing OptComp is #P-easy.

Proof. For convenience we will view rational (ε1,δ1), . . . ,(εk,δk) and εg as given arguments to OptComp
and compute δg. Recall that the two versions of OptComp, viewing εg as given and computing δg and
vice versa, are equivalent up to a polynomial factor (just run binary search over values of δg computing
polynomially many bits of precision). So the formulation we choose for the proof will not affect whether
OptComp is in #P or not. Recall that in our model of computing real valued functions, we will take
another input q and we will output an approximation of δg to q bits of precision in polynomial time using
a #P oracle where δg satisfies the following.

1

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i6∈S

εi
,0
}
= 1−

1−δg

∏
k
i=1 (1−δi)

.

Notice that the only part of the expression above that cannot be computed in polynomial time is the
summation over subsets of {1, . . . ,k}. If we knew the sum, computing δg would be easy given our inputs.
We show how to compute the sum in polynomial time using a #P oracle and it follows that computing δg

is #P-easy.
Define f : 2[k]→ R as

f (S) = max
{

e
∑

i∈S
εi
− eεg · e

∑
i6∈S

εi
,0
}
.

f is computable in polynomial time (to any desired precision). Let f̂ be a function computable in
polynomial time where

∣∣ f̂ (S)− f (S)
∣∣< 1/2q+k for all S. Set m = 10q. Now define the function g : 2[k]×

N→{0,1} as follows.

g(S,n) =

{
1 if m · f̂ (S)≥ n,

0 otherwise.

We can now phrase a decision problem in NP: Does there exist a pair (S,n) such that g(S,n) = 1?
This is in NP because given a witness (S,n), we can compute m · f̂ (S) and compare the output to n,
thereby verifying the solution, in polynomial time. Since this is an NP problem, a #P oracle can count the
solutions to it in one time step. Notice that for every set S, the number of solutions (pairs of the form (S,n)

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 16

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

satisfying g(S,n) = 1) is exactly m · f̂ (S) because g will output 1 for g(S,1),g(S,2), . . . ,g(S,m · f̂ (S)).
So over all possible sets S, the number of solutions as counted by the #P oracle equals m ·∑S⊆[k] f̂ (S).
Dividing this by m gives us the sum up to an additive error of 2k/2q+k = 1/2q, which can be used to
compute δg to q bits of precision in polynomial time. This only required one call to a #P oracle. So
computing OptComp is #P-easy.

Next we show that computing OptComp is also #P-hard through a series of reductions. We start
with a multiplicative version of the partition problem that is known to be #P-complete by Ehrgott [9].
The problems in the chain of reductions are defined below.

Definition 4.6. #INT-PARTITION is the following problem. Given a set Z = {z1,z2, . . . ,zk} of positive
integers, count the partitions P⊆ [k] such that

∏
i∈P

zi−∏
i6∈P

zi = 0 .

All of the remaining problems in our chain of reductions take inputs {w1, . . . ,wk} where 1≤ wi ≤ e
is the D-th root of a positive integer zi for all i ∈ [k] and some positive integer D. All of the reductions we
present actually hold for every positive integer D, including D = 1 (in which case the inputs are integers).
However, we will constrain D to be large enough so that our inputs are in the range [1,e]. This is because
in the final reduction to OptComp, εi values in the proof are set to ln(wi). We want to show that our
reductions hold for reasonable values of the εi in a differential privacy setting so throughout the proofs
we use the wi ∈ [1,e] to correspond to the εi ∈ [0,1] in the final reduction. In fact, we will later state our
reductions as applying to instances where ∏i wi ≤ eε (and hence ∑i εi ≤ ε) for any desired ε > 0.

Definition 4.7. #PARTITION is the following problem. Given a positive integer D ∈ N and a set
W = {w1,w2, . . . ,wk} of real numbers where 1 ≤ w1, . . . ,wk ≤ e are D-th roots of positive integers
z1, . . .zk, count the partitions P⊆ [k] such that

∏
i∈P

wi−∏
i6∈P

wi = 0 .

(The real numbers w1, . . . ,wk are specified in the input by z1, . . . ,zk and D with the input size being the
combined bit-length of these integers in binary.)

Definition 4.8. #T-PARTITION is the following problem. Given a positive integer D ∈ N, a set
W = {w1,w2 . . . ,wk} of real numbers and a positive real number T , where 1≤ w1, . . . ,wk ≤ e are D-th
roots of positive integers z1, . . .zk, and T = 2D

√
t− 2D
√

t ′ for two integers t, t ′, count the partitions P⊆ [k]
such that

∏
i∈P

wi−∏
i 6∈P

wi = T.

(The real numbers w1, . . . ,wk and T are specified in the input by z1, . . . ,zk, t, t ′ and D with the input size
being the combined bit-length of these integers in binary.)

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 17

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

Definition 4.9. SUM-PARTITION is the following problem. Given a positive integer D ∈ N and a
set W = {w1,w2, . . . ,wk} of real numbers where 1 ≤ w1, . . . ,wk ≤ e are D-th roots of positive integers
z1, . . .zk, and a rational number r > 1, find

∑
P⊆[k]

max

{
∏
i∈P

wi− r ·∏
i 6∈P

wi,0

}
.

(The real numbers w1, . . . ,wk are specified in the input by z1, . . . ,zk and D with the input size being the
combined bit-length of these integers and the numerator and denominator of r in binary.)

Since the output of SUM-PARTITION is irrational, the actual computational problem is defined
according to our convention in Section 2 for computing real-valued functions. That is, given an additional
input q, compute a number y such that∣∣∣∣∣y− ∑

P⊆[k]
max

{
∏
i∈P

wi− r ·∏
i 6∈P

wi,0

}∣∣∣∣∣< 1
2q .

We prove that computing OptComp is #P-hard by the following series of reductions.

#INT-PARTITION ≤ #PARTITION ≤ #T-PARTITION ≤ SUM-PARTITION ≤ OptComp .

Since #INT-PARTITION is known to be #P-complete [9], the chain of reductions will prove that
OptComp is #P-hard.

Lemma 4.10. For every constant c > 1, #PARTITION is #P-hard, even on instances where ∏i wi ≤ c.

Proof. Given an instance of #INT-PARTITION, {z1, . . . ,zk}, we show how to find the solution in
polynomial time using a #PARTITION oracle. Set D = dlogc(∏i zi)e and wi = D

√
zi ∀i ∈ [k]. Note that

∏i wi = (∏i zi)
1/D ≤ c. Let P⊆ [k].

∏
i∈P

wi = ∏
i6∈P

wi ⇐⇒

(
∏
i∈P

wi

)D

=

(
∏
i 6∈P

wi

)D

⇐⇒ ∏
i∈P

zi = ∏
i 6∈P

zi .

There is a one-to-one correspondence between solutions to the #PARTITION problem and solutions to
the given #INT-PARTITION instance. We can solve #INT-PARTITION in polynomial time with a
#PARTITION oracle. Therefore #PARTITION is #P-hard.

Lemma 4.11. For every constant c> 1, #T-PARTITION is #P-hard, even on instances where ∏i wi≤ c.

Proof. Let c > 1 be a constant. We will reduce from #PARTITION, so consider an instance of the
#PARTITION problem, W = {w1,w2, . . . ,wk} of D-th roots of integers z1, . . . ,zk. We may assume
∏i wi ≤

√
c since

√
c is also a constant greater than 1.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 18

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

Set W ′ =W ∪{wk+1}, where wk+1 = ∏
k
i=1 wi. Notice that

k+1

∏
i=1

wi ≤ (
√

c)2 = c .

Set T =
√

wk+1 (wk+1−1). Notice that wk+1 =
(
∏

k
i=1 zi

) 1
D so by setting integers

t =

(
k

∏
i=1

zi

)3

and t ′ =
k

∏
i=1

zi

we get that
T = 2D

√
t− 2D
√

t ′

which meets the input requirement for #T-PARTITION. So we can use a #T-PARTITION oracle to
count partitions Q⊆ {1, . . . ,k+1} such that

∏
i∈Q

wi−∏
i 6∈Q

wi = T.

Let P = Q∩{1, . . . ,k}. We will argue that ∏i∈Q wi−∏i6∈Q wi = T if and only if ∏i∈P wi = ∏i 6∈P wi,
which completes the proof. There are two cases to consider: wk+1 ∈ Q and wk+1 6∈ Q.

Case 1: wk+1 ∈ Q. In this case, we have

wk+1 ·

(
∏
i∈P

wi

)
−∏

i 6∈P
wi = ∏

i∈Q
wi−∏

i 6∈Q
wi = T =

√
wk+1 (wk+1−1)

⇐⇒

(
∏
i∈[k]

wi

)(
∏
i∈P

wi

)2

−∏
i∈[k]

wi =

√
∏
i∈[k]

wi

(
∏
i∈[k]

wi−1

)(
∏
i∈P

wi

)
multiplied by∏

i∈P
wi

⇐⇒

∏
i∈P

wi−
√

∏
i∈[k]

wi

∏
i∈[k]

wi ∏
i∈P

wi +

√
∏
i∈[k]

wi

= 0 factored quadratic in∏
i∈P

wi

⇐⇒ ∏
i∈P

wi =

√
∏
i∈[k]

wi

⇐⇒ ∏
i 6∈P

wi = ∏
i∈P

wi.

So there is a one-to-one correspondence between solutions to the #T-PARTITION instance W ′ where
wk+1 ∈ Q and solutions to the original #PARTITION instance W .

Case 2: wk+1 6∈ Q. Solutions now look like

∏
i∈P

wi−∏
i∈[k]

wi ∏
i 6∈P

wi =

√
∏
i∈[k]

wi

(
∏
i∈[k]

wi−1

)
.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 19

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

One way this can be true is if wi = 1 for all i ∈ [k]. We can check ahead of time if our input set W
contains all ones. If it does, then there are 2k−2 partitions that yield equal products (all except P = [k]
and P = /0) so we can just output 2k−2 as the solution and not even use our oracle. The only other way
to satisfy the above expression is for

∏
i∈P

wi > ∏
i∈[k]

wi

which cannot happen because P⊆ [k]. So there are no solutions in the case that wk+1 6∈ Q.
Therefore the output of the #T-PARTITION oracle on W ′ is the solution to the #PARTITION

problem. So #T-PARTITION is #P-hard.

For the next two proofs we will make use of the following fact to bound the amount of precision
needed when approximating irrational numbers by rational ones in our reductions.

Fact 4.12. For all real numbers y > x and functions f that are differentiable on the interval [x,y],

f (y)− f (x)≥ (y− x) · min
z∈(x,y)

f ′(z) .

Lemma 4.13. For every constant c > 1, SUM-PARTITION is #P-hard even on instances where
∏i wi ≤ c and where there are no partitions S such that

∏
i∈S

wi = r ·∏
i 6∈S

wi .

Proof. We will use a SUM-PARTITION oracle to solve #T-PARTITION given a set W = {w1, . . . ,wk}
of D-th roots of positive integers z1, . . . ,zk, and a positive real number T = 2D

√
t− 2D
√

t ′ for integers t, t ′

given in the input. Notice that for every x > 0,

∏
i∈P

wi−∏
i6∈P

wi = x =⇒ ∏
i∈P

wi−
∏i∈[k] wi

∏i∈P wi
= x

=⇒ ∃ j ∈ Z+such that D
√

j−
∏i∈[k] wi

D
√

j
= x .

Above, j must be a positive integer greater than
(
∏

k
i=1 zi

)1/2
, which tells us that the gap in products

from every partition must take a particular form. This means that for a given D and W , #X-PARTITION
can only be non-zero on a discrete set of possible values of x. So given our #T-PARTITION instance we
can find a T ′ > T such that the above has no solutions for x in the interval (T,T ′). Specifically, solve
the above quadratic for D

√
j. If j is not an integer, then we know the answer to the #T-PARTITION

instance is 0, so assume j is an integer and set T ′ = D
√

j+1−∏i wi/
D
√

j+1. We can also find an
interval (T ′′,T) just below T where no value of x in the interval can yield a solution above by setting
T ′′ = D

√
j−1−∏i wi/

D
√

j−1. We use these discreteness properties twice in the proof. Also notice that
these intervals are not too small.

Claim 4.14. T ′−T ≥ 2−poly(n) and T −T ′′ ≥ 2−poly(n) where n is the input length (i. e., the bit-lengths
of the integers z1, . . . ,zk, t, t ′).

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 20

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

Proof of Claim.

T ′−T = D
√

j+1−
∏i∈[k] wi

D
√

j+1
− D
√

j+
∏i∈[k] wi

D
√

j
≥ D
√

j+1− D
√

j ≥ 1
D(j+1)

,

where the last inequality follows from Fact 4.12. This final value is only exponentially small
because j is upper bounded by ∏

k
i=1 zi, which is at most exponentially large in the bit-length

of the zi. A very similar proof shows that (T ′′,T) is only exponentially small.

This means that we can always find T̂ ∈ (T,T ′) such that T̂ is rational and can be fully specified with
a bit-length that is polynomial in the input length. Fix such a quantity T̂ . For all y > 0, define

Py ≡

{
P⊆ [k]

∣∣∣∣∣∏i∈P
wi−∏

i 6∈P
wi ≥ y

}
.

Then, since x-PARTITION has no solutions for x ∈ (T,T ′),∣∣∣∣∣
{

P⊆ [k]

∣∣∣∣∣∏i∈P
wi−∏

i 6∈P
wi = T

}∣∣∣∣∣= ∣∣∣PT\PT̂
∣∣∣

=
1
T

 ∑
P∈PT \PT̂

(
∏
i∈P

wi−∏
i 6∈P

wi

)
=

1
T

(
∑

P∈PT

(
∏
i∈P

wi−∏
i 6∈P

wi

)
− ∑

P∈PT̂

(
∏
i∈P

wi−∏
i 6∈P

wi

))
.

We now show how to compute the two sums in the final term using the SUM-PARTITION oracle.
We will give the procedure for computing

∑
P∈PT

(
∏
i∈P

wi−∏
i 6∈P

wi

)

and the case with T̂ will follow by symmetry. The oracle returns a real number, so by our model of
computing real valued functions, we will also give the oracle an additional input that specifies the number
of bits of precision in its output. Ultimately we only need to approximate each sum to within ±T/4.
This will give an approximation to the #T-PARTITION problem to within ±1/2, thereby solving it by
rounding the approximation because the solution will be an integer. We want to set the input r to the
SUM-PARTITION oracle to be r = rT such that for all P⊆ [k], we have

∏
i∈P

wi− rT ·∏
i 6∈P

wi ≥ 0 ⇐⇒ ∏
i∈P

wi−∏
i 6∈P

wi ≥ T. (4.1)

Taking w = ∏i∈[k] wi and thinking of v = ∏i∈P wi, it suffices that all positive solutions to each of the
following two inequalities are the same.

v− rT
w
v
≥ 0 and v− w

v
≥ T.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 21

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

The positive solutions to the left one are v ≥ √rT w, and to the right one are v ≥ (T +
√

T 2 +4w)/2.
Setting the right-hand sides equal gives

rT =

(
T +
√

T 2 +4w
)2

4w
. (4.2)

Since rT might be irrational and SUM-PARTITION takes as input rational values of r, we need to
find a rational r that approximates rT and preserves the set of solutions PT . Recall from Claim 4.14 that
there is an (only) exponentially small interval (T ′′,T) below T such that for all T̄ ∈ (T ′′,T), PT = PT̄ .
This translates to a corresponding interval (rT ′′ ,rT) such that for all r ∈ (rT ′′ ,rT), Equivalence (4.1) holds.
Furthermore, this interval is also only exponentially small.

Claim 4.15. rT − rT ′′ ≥ 2−poly(n) where n is the input length (i. e., the bit-lengths of the integers
z1, . . . ,zk, t, t ′).

Proof of Claim. To see this, view rT from Equation (4.2) as a function r(T) of T , and
calculate the derivative.

r′(T) =

(
T +
√

T 2 +4w
)2

2w ·
√

T 2 +4w
.

Fact 4.12 says that

rT − rT ′′ = r(T)− r(T ′′)≥
(

min
z∈(T ′′,T)

r′(z)
)
· (T −T ′′)≥ (T −T ′′) ·poly(T) .

(Recall that 1 ≤ w = ∏i wi ≤ c). This is only exponentially small in the input length by
Claim 4.14.

So we can choose a rational r ∈ (rT ′′ ,rT) that can be specified with a number of bits that is polynomial
in the input length and preserves

PT =

{
P⊆ [k]

∣∣∣∣∣∏i∈P
wi− r ·∏

i 6∈P
wi ≥ 0

}
.

However the SUM-PARTITION oracle gives us

∑
P⊆[k]

max

{
∏
i∈P

wi− r ·∏
i6∈P

wi,0

}
= ∑

P∈PT

(
∏
i∈P

wi− r ·∏
i 6∈P

wi

)
,

whereas we want to compute the right-hand side without the r coefficient. To get this we just pick
another rational r′ ∈ (rT ′′ ,rT) such that r′− r ≥ 2−poly(n). If precision were not an issue, we could run our

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 22

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

SUM-PARTITION oracle for r and r′ and receive the output

S1 = ∑
P∈PT

(
∏
i∈P

wi− r ·∏
i6∈P

wi

)
,

S2 = ∑
P∈PT

(
∏
i∈P

wi− r′ ·∏
i6∈P

wi

)
.

Then the following linear combination of S1 and S2 gives us what we want.

r′−1
r′− r

·S1−
r−1
r′− r

·S2 = ∑
P∈PT

(
∏
i∈P

wi−∏
i 6∈P

wi

)
.

Claim 4.16. Computing S1 and S2 to within ±2−poly(n) yields an approximation of

∑
P∈PT

(
∏
i∈P

wi−∏
i 6∈P

wi

)
to within ±T/4.

Proof of Claim. We just need to approximate S1 and S2 to within

±T
8
· r′− r

r′−1

to get the desired precision. This additive error is only exponentially small by Claim 4.15.

Running this whole procedure again for T̂ ∈ (T,T ′), which we fixed above gives us all the in-
formation we need to count the solutions to the #T-PARTITION instance we were given. We can
solve #T-PARTITION in polynomial time with four calls to a SUM-PARTITION oracle. Therefore
SUM-PARTITION is #P-hard.

Now we prove that computing OptComp is #P-complete.

Proof of Theorem 1.6. We have already shown that computing OptComp is #P-easy. Here we prove that
it is also #P-hard, thereby proving #P-completeness.

We are given an instance D, W = {w1, . . . ,wk},r ∈Q, and q of SUM-PARTITION, where ∀i ∈ [k],
wi is the D-th root of a corresponding integer zi, ∏i wi ≤ c, and q specifies the desired number of
bits of precision in the output. If we disregard precision, we would like to set εi = ln(wi) ∀i ∈ [k],
δ1 = δ2 = . . .δk = 0 and εg = ln(r). Note that ∑i εi = ln(∏i wi) ≤ ln(c). Since we can take c to be an
arbitrary constant greater than 1, we can ensure that ∑i εi ≤ ε for an arbitrary ε > 0.

Again we will use the version of OptComp that takes εg as input and outputs δg. After using an
OptComp oracle to find δg we know the optimal composition Equation (1.2) from Theorem 1.5 is satisfied.

1

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i 6∈S

εi
,0
}
= 1−

1−δg

∏
k
i=1 (1−δi)

= δg.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 23

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

Thus we can compute

δg ·
k

∏
i=1

(1+ eεi) = ∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i 6∈S

εi
,0
}

= ∑
S⊆{1,...,k}

max

{
∏
i∈S

wi− r ·∏
i 6∈S

wi,0

}
.

This last expression is exactly the solution to the instance of SUM-PARTITION we were given.
Taking precision into account, the input SUM-PARTITION instance has an additional input q that
specifies the desired number of bits of precision in the output and we can only pass OptComp rational
values so we will have to approximate εi = ln(wi) for all i and εg = ln(r). Again there is a worry that
when we approximate these values the set of partitions S that make

∏
i∈S

wi− r ·∏
i 6∈S

wi > 0

might change. We want to get enough precision in our inputs so that the set of partitions over which we
sum does not change and enough precision so that the output is accurate to q bits. We will calculate the
approximations required for each of these two goals separately and the final precision that we use will just
be the maximum of the two. We prove that we can achieve both of these goals with the next two claims.

Claim 4.17. There exists a polynomial p(n) in the length n of the input (the bit-lengths of z1, . . . ,zk,q, and
the numerator and denominator of r) such that if |wi−w′i| ≤ 2−p(n) for each i, then the set of partitions S
satisfying

∏
i∈S

wi− r ·∏
i 6∈S

wi > 0

is the same as the set of partitions satisfying

∏
i∈S

w′i− r ·∏
i 6∈S

w′i > 0 .

Proof of Claim. Recall that SUM-PARTITION is #P-hard even on instances where there
are no partitions S such that

∏
i∈S

wi = r ·∏
i6∈S

wi

so we may assume our input instance of SUM-PARTITION has no such partitions and still
prove the hardness of OptComp. So to ensure that we have enough precision such that the
set over which we sum does not change, we must make the error smaller than the minimum
possible (in absolute value) nonzero outcome of

∏
i∈S

wi− r ·∏
i 6∈S

wi .

We now bound this quantity. Let

S=

{
S⊆ [k]

∣∣∣∣∣∏i∈S
wi 6= ∏

i6∈S
wi

}
.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 24

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

Since r is rational, r = a/b for two integers a and b. Let a′ = aD and b′ = bD.

min
S∈S

{∣∣∣∣∣∏i∈S
wi− r ·∏

i 6∈S
wi

∣∣∣∣∣
}

= min
S∈S


∣∣∣∣∣∣
(

∏
i∈S

zi

) 1
D

−

(
a′

b′∏i 6∈S
zi

) 1
D

∣∣∣∣∣∣


≥min
S∈S

{∣∣∣∣∣∏i∈S
zi−

a′

b′∏i 6∈S
zi

∣∣∣∣∣ · 1

D
(
∏i∈[k] zi

)(D−1)/D

}
.

Where the last line follows from Fact 4.12 applied to the function f (x) = x1/D.

1/

(
∏
i∈[k]

zi

)(D−1)/D

is only exponentially small because ∏i∈[k] zi is at most exponentially large in the bit-length
of the integers z1, . . . ,zk. We claim that∣∣∣∣∣∏i∈S

zi−
a′

b′∏i 6∈S
zi

∣∣∣∣∣
is at least 1/b′ for all S ∈ S. Fix S ∈ S.∣∣∣∣∣∏i∈S

zi−
a′

b′∏i 6∈S
zi

∣∣∣∣∣= h =⇒

∣∣∣∣∣b′ ·∏i∈S
zi−a′ ·∏

i 6∈S
zi

∣∣∣∣∣= h ·b′

=⇒ h≥ 1/b′.

Where the last implication follows because

b′ ·∏
i∈S

zi−a′ ·∏
i 6∈S

zi

is just a difference of integers so the closest nonzero value it can take on is ±1.

Claim 4.18. There exists a polynomial p(n) in the length n of the input (the bit-lengths of z1, . . . ,zk,q,
and the numerator and denominator of r) such that if |wi−w′i| ≤ 2−p(n) for each i, then∣∣∣∣∣ ∑

S⊆{1,...,k}
max

{
∏
i∈S

w′i− r ·∏
i 6∈S

w′i,0

}
− ∑

S⊆{1,...,k}
max

{
∏
i∈S

wi− r ·∏
i 6∈S

wi,0

}∣∣∣∣∣≤ 2−q.

Proof of Claim. We will choose p(n) = p1(n)+ p2(n) where p1(n) is the polynomial that
exists from Claim 4.17 and p2(n) will be determined later. Define

S+ =

{
S⊆ [k] |∏

i∈S
wi− r ·∏

i 6∈S
wi > 0

}
.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 25

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

Claim 4.17 says that

S+ =

{
S⊆ [k] |∏

i∈S
w′i− r ·∏

i 6∈S
w′i > 0

}
.

Now we can write∣∣∣∣∣ ∑
S⊆{1,...,k}

max

{
∏
i∈S

w′i− r ·∏
i6∈S

w′i,0

}
− ∑

S⊆{1,...,k}
max

{
∏
i∈S

wi− r ·∏
i6∈S

wi,0

}∣∣∣∣∣=∣∣∣∣∣ ∑
S∈S+

(
∏
i∈S

w′i− r ·∏
i6∈S

w′i

)
− ∑

S∈S+

(
∏
i∈S

wi− r ·∏
i 6∈S

wi

)∣∣∣∣∣=∣∣∣∣∣ ∑
S∈S+

(
∏
i∈S

w′i−∏
i∈S

wi

)
− ∑

S∈S+
r ·

(
∏
i6∈S

w′i−∏
i6∈S

wi

)∣∣∣∣∣≤∣∣∣∣∣ ∑
S∈S+

(
∏
i∈S

w′i−∏
i∈S

wi

)∣∣∣∣∣+
∣∣∣∣∣ ∑
S∈S+

r ·

(
∏
i 6∈S

w′i−∏
i 6∈S

wi

)∣∣∣∣∣ .
Bounding each term in the final expression above by 2−(q+1) then gives us the accuracy we
want. We will show directly how to bound the second term and the argument for the first
term follows symmetrically. By hypothesis we have that for all S⊆ [k],

∏
i6∈S

w′i ≤∏
i6∈S

(
wi +2−p(n)

)
≤∏

i 6∈S

(
1+2−p(n)

)
wi ≤

(
1+2−p(n)

)k
·∏

i6∈S
wi

and similarly

∏
i6∈S

w′i ≥
(

1−2−p(n)
)k
·∏

i 6∈S
wi .

It follows that for all S⊆ [k],((
1−2−p(n)

)k
−1
)
·∏

i6∈S
wi ≤

(
∏
i6∈S

w′i−∏
i6∈S

wi

)
≤
((

1+2−p(n)
)k
−1
)
·∏

i 6∈S
wi .

Since |S+| ≤ 2k and 1≤∏i 6∈S wi ≤ c for all S we get

2k · r ·
((

1−2−p(n)
)k
−1
)
· ≤ ∑

S∈S+
r ·

(
∏
i 6∈S

w′i−∏
i 6∈S

wi

)
≤ 2k · r ·

((
1+2−p(n)

)k
−1
)
· c .

Picking p2(n) such that p(n) = p1(n)+ p2(n)> 2k+ log(rc)+q+1 then suffices to bound
the absolute value of the sum by 2−(q+1). Repeating the same calculation for

∑
S∈S+

(
∏
i∈S

w′i−∏
i∈S

wi

)

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 26

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

will yield the same approximation except without the factor of r. So we can bound both
terms by 2−(q+1) (and therefore their sum by 2−q) by approximating each wi to a precision
that is polynomial in n, which proves the claim.

So by the two claims above we can get an approximation of the SUM-PARTITION instance to q
bits of precision in polynomial time with access to an OptComp oracle. Therefore computing OptComp
is #P-hard.

5 Approximation of OptComp

Although we cannot hope to efficiently compute the optimal composition for a general set of differentially
private algorithms (assuming P 6=NP or even FP 6=#P), we show in this section that we can approximate
OptComp to arbitrary precision in polynomial time.

Theorem 1.7 (restated). There is a polynomial-time algorithm that given rational ε1, . . . ,εk ≥ 0,
δ1, . . . ,δk,δg ∈ [0,1), and η ∈ (0,1), outputs ε∗ satisfying

OptComp((ε1,δ1), . . . ,(εk,δk),δg)≤ ε
∗ ≤ OptComp((ε1,δ1), . . . ,(εk,δk),e−η/2 ·δg)+η .

The algorithm runs in time

O
(

k3 · ε · (1+ ε)

η
· log

(
k2 · ε · (1+ ε)

η

))
where ε = ∑i∈[k] εi/k, assuming constant-time arithmetic operations.

We prove Theorem 1.7 using the following three lemmas:

Lemma 5.1. Given non-negative integers a1, . . . ,ak, B and weights w1, . . . ,wk ∈Q, one can compute

∑
S⊆[k] s.t.
∑

i∈S
ai≤B

∏
i∈S

wi

in time O(Bk).

Notice that the constraint in Lemma 5.1 is the same one that characterizes knapsack problems.
Indeed, the algorithm we give for computing ∑S⊆[k] ∏i∈S wi is a slight modification of the known pseudo-
polynomial time algorithm for counting knapsack solutions, which uses dynamic programming. Next we
show that we can use this algorithm to approximate OptComp.

Lemma 5.2. Given a rational eε0 with ε0 ≥ 0 and ε1 = a1 · ε0, . . . ,εk = ak · ε0,ε
∗ = a∗ · ε0 for positive

integers a1, . . . ,ak,a∗ (given as input), and rational δ1, . . .δk,δg ∈ [0,1), there is an algorithm that
determines whether or not OptComp((ε1,δ1), . . . ,(εk,δk),δg)≤ ε∗ and runs in time

O

(
k ·

k

∑
i=1

ai

)
assuming constant-time arithmetic operations.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 27

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

In other words, if the ε values we are given are all integer multiples of some ε0 where eε0 is rational,
we can determine whether or not the composition of those privacy parameters is (a∗ ·ε0,δg)-DP in pseudo-
polynomial time, for every positive integer a∗. Running binary search over integers a∗, we can find the
minimum such integer. When ε0 is small, this gives us a good overestimate of the optimal composition
of the discrete input privacy parameters. This means that given any inputs (ε1,δ1), . . . ,(εk,δk),δg to
OptComp, we can discretize and polynomially bound the εi values to new values ε ′i for all i ∈ [k] and use
Lemma 5.2 to approximate OptComp((ε ′1,δ1), . . . ,(ε

′
k,δk),δg). The next lemma tells us that this is also a

good approximation of OptComp((ε1,δ1), . . . ,(εk,δk),δg).

Lemma 5.3. For all ε1, . . . ,εk,c1, . . . ,ck ≥ 0 and δ1, . . . ,δk,δg ∈ [0,1),

OptComp((ε1 + c1,δ1), . . . ,(εk + ck,δk),δg)≤ OptComp((ε1,δ1), . . . ,(εk,δk),e−c/2 ·δg)+ c

where c = ∑
k
i=1 ci.

Next we prove the three lemmas and then show that Theorem 1.7 follows.

Proof of Lemma 5.1. We modify Dyer’s algorithm for approximately counting solutions to knapsack
problems [8]. The algorithm uses dynamic programming. Given non-negative integers a1, . . . ,ak, B, and
weights w1, . . . ,wk ∈Q, define

F(r,s) = ∑
S⊆[r] s.t.
∑

i∈S
ai≤s

∏
i∈S

wi .

We want to compute F(k,B), which we can do by tabulating F(r,s) for (0≤ r ≤ k, 0≤ s≤ B) using
the following recursion.

F(r,s) =


1 if r = 0,

F(r−1,s)+wrF(r−1,s−ar) if r > 0 and ar ≤ s,

F(r−1,s) if r > 0 and ar > s.

Each cell F(r,s) in the table can be computed in constant time given earlier cells F(r′,s′) where
r′ < r. Thus filling the entire table takes time O(Bk).

Proof of Lemma 5.2. Given a rational eε0 ≥ 0 and ε1 = a1 · ε0, . . . ,εk = ak · ε0,ε
∗ = a∗ · ε0 for positive

integers a1, . . . ,ak,a∗ and rational δ1, . . .δk,δg ∈ [0,1) Theorem 1.5 tells us that answering whether or not

OptComp((ε1,δ1), . . . ,(εk,δk),δg)≤ ε
∗

is equivalent to answering whether or not the following inequality holds.

1

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eε∗ · e

∑
i 6∈S

εi
,0
}
≤ 1−

1−δg

∏
k
i=1 (1−δi)

. (5.1)

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 28

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

The right-hand side and ∏
k
i=1(1+eεi) are easy to compute given the inputs (note that eεi is rational for all

i ∈ [k] because each is an integer power of eε0). So in order to check the inequality, we will show how to
compute the sum. Define

K =

{
T ⊆ [k] |∑

i6∈T
εi ≥ ε

∗+ ∑
i∈T

εi

}

=

{
T ⊆ [k] |∑

i∈T
εi ≤

(
k

∑
i=1

εi− ε
∗

)
/2

}

=

{
T ⊆ [k] |∑

i∈T
ai ≤ B

}
for B =

⌊(
k

∑
i=1

ai−a∗
)
/2

⌋

and observe that by setting T = Sc, we have

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eε∗ · e

∑
i6∈S

εi
,0
}
= ∑

T∈K

((
k

∏
i=1

eεi ·∏
i∈T

e−εi

)
−

(
eε∗ ·∏

i∈T
eεi

))
.

We can now use Lemma 5.1 to compute each term separately since K is a set of knapsack solutions.
Specifically, setting wi = e−εi ∀i ∈ [k], Lemma 5.1 tells us that we can compute ∑T⊆[k] ∏i∈T wi subject to
∑i∈T ai ≤ B, which is equivalent to

∑
T∈K

∏
i∈T

e−εi .

To compute ∑T∈K ∏i∈T eεi , we instead set wi = eεi and run the same procedure. (Note that eε∗ = (eε0)a∗ ,
which is rational.) So we can determine whether or not Inequality (5.1) holds. We used the algorithm
from Lemma 5.1 so the running time is

O(Bk) = O

(
k ·

k

∑
i=1

ai

)
.

Proof of Lemma 5.3. Fix ε1, . . . ,εk,c1, . . . ,ck ≥ 0 and δ1, . . . ,δk,δg ∈ [0,1) and let c = ∑i∈[k] ci. Let
OptComp((ε1,δ1), . . . ,(εk,δk),e−c/2 ·δg) = εg. From Equation (1.2) in Theorem 1.5 we know

1

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i6∈S

εi
,0
}
≤ 1−

1− e−c/2 ·δg

∏
k
i=1 (1−δi)

.

Multiplying both sides by ec/2 gives

ec/2

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i 6∈S

εi
,0
}
≤ ec/2 ·

(
1−

1− e−c/2 ·δg

∏
k
i=1 (1−δi)

)

≤ 1−
1−δg

∏
k
i=1 (1−δi)

.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 29

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

The above inequality together with Theorem 1.5 means that showing the following will complete the
proof.

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
(εi+ci)

− eεg+c · e
∑

i6∈S
(εi+ci)

,0
}
≤

ec/2 ·∏k
i=1 (1+ eεi+ci)

∏
k
i=1 (1+ eεi)

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
εi
− eεg · e

∑
i 6∈S

εi
,0
}
.

Since (1+ eεi+ci)/(1+ eεi)≥ eci/2 for every εi,ci > 0, it suffices to show

∑
S⊆{1,...,k}

max
{

e
∑

i∈S
(εi+ci)

− eεg+c · e
∑

i6∈S
(εi+ci)

,0
}
≤ ∑

S⊆{1,...,k}
ec ·max

{
e

∑
i∈S

εi
− eεg · e

∑
i 6∈S

εi
,0
}
.

This inequality holds term by term. If a right-hand term is zero(
∑
i∈S

εi ≤ εg +∑
i6∈S

εi

)
,

then so is the corresponding left-hand term(
∑
i∈S

(εi + ci)≤ εg + c+∑
i6∈S

(εi + ci)

)
.

For the nonzero terms, the factor of ec ensures that the right-hand terms are larger than the left-hand
terms.

Proof of Theorem 1.7. Lemma 5.2 tells us that we can determine whether a set of privacy parameters
satisfies some (εg,δg) differential privacy guarantee if the εi values and εg are all positive integer multiples
of some ε0 where eε0 is rational. We are given rational ε1, . . . ,εk ≥ 0,δ1, . . .δk,δg ∈ [0,1), and η ∈ (0,1).
Let ε = ∑i∈[k] εi/k be the arithmetic mean of the εi values. Let β = η/(k · (1+ε)+1), set ε0 = ln(1+β),
and for all i ∈ [k] set ai = dεi · (1/β +1)e and ε ′i = ε0 ·ai. We will use the following bounds on ε0 in the
proof.

β

2
≤ β

1+β
≤ ε0 ≤ β .

With these settings, the ai are non-negative integers, the ε ′i values are all integer multiples of ε0
and eε0 is rational. So for every positive integer a we can apply Lemma 5.2 to determine whether
or not OptComp((ε ′1,δ1), . . . ,(ε

′
k,δk),δg) ≤ a · ε0 in time O

(
k ·∑i∈[k] ai

)
. Running binary search over

integers a, we can find the minimum such integer, which we will call a∗. The algorithm’s estimate of
OptComp((ε1,δ1), . . . ,(εk,δk),δg) will be a∗ ·ε0. However since this number is irrational, we will use the
Taylor approximation of the natural logarithm to output ε∗ satisfying a∗ ·ε0 ≤ ε∗ ≤ a∗ ·ε0 +β −ε0. Since
we only need to calculate a few terms of the Taylor expansion of ln(1+β) to achieve this approximation,
this step will not affect our running time. The pseudocode for this procedure is below.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 30

http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

Input: ε1, . . . ,εk ≥ 0, δ1, . . . ,δk,δg ∈ [0,1), η ∈ (0,1)
Output: Approximation of OptComp((ε1,δ1), . . . ,(εk,δk),δg)
ε ← ∑i∈[k] εi/k
β ← η/(k · (1+ ε)+1)
ε0← ln(1+β)
for i ∈ [k] do

ai← dεi · (1/β +1)e
ε ′i ← ε0 ·ai

end for
Use binary search and Lemma 5.2 to find minimum integer a∗ such that

OptComp((ε ′1,δ1), . . . ,(ε
′
k,δk),δg)≤ a∗ · ε0

return Taylor approximation to a∗ · ε0

Since we choose a∗ to be the minimum integer satisfying composition we have

ε
∗−β ≤ (a∗−1) · ε0 ≤ OptComp((ε ′1,δ1), . . . ,(ε

′
k,δk),δg)≤ a∗ · ε0 ≤ ε

∗ .

a∗ can range from 0 to ∑i∈[k] ai so the binary search can be done in

log

(
∑

i∈[k]
ai

)
= logO

(
k2 · ε · (1+ ε)/η

)
iterations. This gives us a total running time of

O
(

k3 · ε · (1+ ε)

η
· log

(
k2 · ε · (1+ ε)

η

))
.

Now we argue that ε∗ is a good approximation of OptComp((ε1,δ1), . . . ,(εk,δk),δg). For all i ∈ [k]
we have

ε
′
i = ε0 ·ai ≥

β

1+β
·
⌈

εi ·
(

1
β
+1
)⌉
≥ εi .

So all of the ε ′i values are overestimates of their corresponding εi values and therefore

OptComp((ε1,δ1), . . . ,(εk,δk),δg)≤ OptComp((ε ′1,δ1), . . . ,(ε
′
k,δk),δg)≤ ε

∗

satisfying one of the inequalities in the theorem. We also have for all i ∈ [k]

ε
′
i = ε0 ·

⌈
εi ·
(

1
β
+1
)⌉
≤ β ·

(
εi ·
(

1
β
+1
)
+1
)
= εi +β · (εi +1) .

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 31

http://dx.doi.org/10.4086/toc

JACK MURTAGH AND SALIL VADHAN

Let ci = β · (εi +1) for all i ∈ [k] and let c = ∑i∈[k] ci = β · k · (1+ ε). Now we get

ε
∗−β ≤ OptComp((ε ′1,δ1), . . . ,(ε

′
k,δk),δg)

≤ OptComp((ε1 + c1,δ1), . . . ,(εk + ck,δk),δg)

≤ OptComp((ε1,δ1), . . . ,(εk,δk),e−β ·k·(1+ε)/2 ·δg)+β · k · (1+ ε)

by Lemma 5.3. Noting that β ·k ·(1+ε) and β ·k ·(1+ε)+β are both at most η completes the proof.

6 Comparison of composition theorems

The plots in Figure 2 below compare the performances of four homogeneous composition theorems.
In all figures, “Summing” refers to basic composition—Theorem 1.2 [4], “DRV” refers to advanced
composition—Theorem 1.3 [7], “KOV Bound” refers to the bound below [12] that is a closed form
approximation of the optimal composition theorem, and “Optimal” refers to the optimal composition
theorem—Theorem 1.4 [12].

Theorem 6.1 (KOV Bound [12]). For every ε ≥ 0, δ , δ̃ ∈ [0,1], and (ε,δ)-differentially private algo-
rithms M1,M2, . . . ,Mk, the composition (M1,M2, . . . ,Mk) satisfies (εg,1− (1−δ)k(1− δ̃))-DP for

εg = min

kε,
(eε −1)εk

eε +1
+ ε

√√√√2k log

(
e+

√
kε2

δ̃

)
,
(eε −1)εk

eε +1
+ ε

√
2k log

(
1
δ̃

) .

Here we are composing k mechanisms that are (ε,δ) differentially private to obtain an (εg,δg)
differentially private mechanism as guaranteed by one of the composition theorems. Note that DRV as
typically formulated is the only one of the bounds that does not have simple summing as a special case.
For that reason the DRV bound actually performs worse than summing for small values of k before the
asymptotic improvement kicks in.

Acknowledgements

We thank Mark Bun, Cynthia Dwork, and Thomas Steinke for helpful comments, particularly regarding
our proof of Lemma 3.2.

References

[1] HAI BRENNER AND KOBBI NISSIM: Impossibility of differentially private universally opti-
mal mechanisms. SIAM J. Comput., 43(5):1513–1540, 2014. Preliminary version in FOCS’10.
[doi:10.1137/110846671, arXiv:1008.0256] 5

[2] MARK BUN AND THOMAS STEINKE: Concentrated differential privacy: Simplifications, exten-
sions, and lower bounds. In Proc. 14th Theory of Cryptography Conf. (TCC’16), pp. 635–658.
Springer, 2016. [doi:10.1007/978-3-662-53641-4_24, arXiv:1605.02065] 7

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 32

https://dl.acm.org/citation.cfm?id=1918368
http://dx.doi.org/10.1137/110846671
http://arxiv.org/abs/1008.0256
http://dx.doi.org/10.1007/978-3-662-53641-4_24
http://arxiv.org/abs/1605.02065
http://dx.doi.org/10.4086/toc

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Varying Epsilon, k up to 700

k

G
lo

ba
l E

ps
ilo

n

Summing
DRV
KOV bound
Optimal

ε = 0.01

ε = 0.005

ε = 0.0025

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Varying Epsilon, k up to 100

k

G
lo

ba
l E

ps
ilo

n

Summing
DRV
KOV bound
Optimal

ε = 0.01

ε = 0.005

ε = 0.0025

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Varying Global Delta

k

G
lo

ba
l E

ps
ilo

n

Summing
DRV
KOV bound
Optimal

δg = 2−20

δg = 2−45

0 100 200 300 400 500 600 700

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Percentage Comparison

k

R
at
io
s

Summing/Opt
DRV/Opt
KOV/Opt
Opt/Opt

Figure 2: (Top Left) εg given by four composition theorems for varying values of ε as k grows. Parameters
δ = 0 and δg = 2−25. (Top Right) Same as Top Left zoomed in on the k < 100 regime. We see that
optimal composition gives substantial savings in εg, even for moderate values of k. (Bottom Left) εg

given by four composition theorems for varying values of δg as k grows, with parameters δ = 0 and
ε = .005 for the individual mechanisms. δg does not affect εg in basic composition. (Bottom Right)
Performance of composition theorems measured relative to optimal composition. Depicts every curve in
Figure 1 divided by the optimal composition curve. We see that relative performances of the KOV bound
and DRV seem to converge to a constant. The εg values given by the KOV bound are about 20% larger
than optimal and the values given by advanced composition are about 30-40% larger than optimal.

JACK MURTAGH AND SALIL VADHAN

[3] MERCÈ CROSAS: The dataverse network R©: An open-source application for sharing, discovering
and preserving data. D-Lib Magazine, 17(1/2), 2011. [doi:10.1045/january2011-crosas] 5

[4] CYNTHIA DWORK, KRISHNARAM KENTHAPADI, FRANK MCSHERRY, ILYA MIRONOV, AND

MONI NAOR: Our data, ourselves: Privacy via distributed noise generation. In Proc. 25th Int.
Conf. on the Theory and Application of Cryptographic Techniques (EUROCRYPT’06), pp. 486–503.
Springer, 2006. [doi:10.1007/11761679_29] 2, 32

[5] CYNTHIA DWORK, FRANK MCSHERRY, KOBBI NISSIM, AND ADAM SMITH: Calibrating noise
to sensitivity in private data analysis. J. Privacy and Confidentiality, 7(3):17–51, 2016. Preliminary
version in TCC’06. Available at journal’s webpage. 2, 6

[6] CYNTHIA DWORK AND AARON ROTH: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014. [doi:10.1561/0400000042] 6

[7] CYNTHIA DWORK, GUY N. ROTHBLUM, AND SALIL P. VADHAN: Boosting and differential
privacy. In Proc. 51st FOCS, pp. 51–60. IEEE Comp. Soc. Press, 2010. [doi:10.1109/FOCS.2010.12]
2, 3, 6, 7, 32

[8] MARTIN E. DYER: Approximate counting by dynamic programming. In Proc. 35th STOC, pp.
693–699. ACM Press, 2003. [doi:10.1145/780542.780643] 28

[9] MATTHIAS EHRGOTT: Approximation algorithms for combinatorial multicriteria optimization prob-
lems. Internat. Trans. Operational Res., 7(1):5–31, 2000. [doi:10.1111/j.1475-3995.2000.tb00182.x]
17, 18

[10] MARCO GABOARDI, JAMES HONAKER, GARY KING, JACK MURTAGH, KOBBI NISSIM,
JONATHAN ULLMAN, AND SALIL P. VADHAN: PSI (Ψ): A private data sharing interface. Harvard
University Privacy Tools Project, 2016. [arXiv:1609.04340] 5

[11] ARPITA GHOSH, TIM ROUGHGARDEN, AND MUKUND SUNDARARAJAN: Universally utility-
maximizing privacy mechanisms. SIAM J. Comput., 41(6):1673–1693, 2012. Preliminary version
in STOC’09. [doi:10.1137/09076828X, arXiv:0811.2841] 5

[12] PETER KAIROUZ, SEWOONG OH, AND PRAMOD VISWANATH: The composition theorem for
differential privacy. IEEE Trans. Inform. Theory, 63(6):4037–4049, 2017. Preliminary version in
ICML’15. [doi:10.1109/TIT.2017.2685505, arXiv:1311.0776] 3, 4, 5, 7, 32

[13] GARY KING: An introduction to the dataverse network as an infrastructure for data sharing.
Sociological Methods & Research, 36(2):173–199, 2007. [doi:10.1177/0049124107306660] 5

[14] JACK MURTAGH AND SALIL P. VADHAN: The complexity of computing the optimal composition
of differential privacy. In Proc. 14th Theory of Cryptography Conf. (TCC’16), pp. 157–175. Springer,
2016. [doi:10.1007/978-3-662-49096-9_7, arXiv:1507.03113v2] 1

[15] STANLEY L. WARNER: Randomized response: A survey technique for eliminating evasive answer
bias. J. Amer. Stat. Assoc., 60(309):63–69, 1965. [doi:10.1080/01621459.1965.10480775] 3, 7

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 34

http://dx.doi.org/10.1045/january2011-crosas
http://dx.doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1139&context=jpc
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1109/FOCS.2010.12
http://dx.doi.org/10.1145/780542.780643
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00182.x
http://arxiv.org/abs/1609.04340
https://dl.acm.org/citation.cfm?doid=1536414.1536464
http://dx.doi.org/10.1137/09076828X
http://arxiv.org/abs/0811.2841
https://dl.acm.org/citation.cfm?id=3045265
http://dx.doi.org/10.1109/TIT.2017.2685505
http://arxiv.org/abs/1311.0776
http://dx.doi.org/10.1177/0049124107306660
http://dx.doi.org/10.1007/978-3-662-49096-9_7
http://arxiv.org/abs/1507.03113v2
http://dx.doi.org/10.1080/01621459.1965.10480775
http://dx.doi.org/10.4086/toc

THE COMPLEXITY OF COMPUTING THE OPTIMAL COMPOSITION OF DIFFERENTIAL PRIVACY

AUTHORS

Jack Murtagh
Graduate student
Harvard University, Cambridge, MA
jmurtagh g harvard edu
https://scholar.harvard.edu/jmurtagh

Salil Vadhan
Vicky Joseph Professor of
Computer Science and Applied Mathematics
Harvard University, Cambridge, MA
salil_vadhan harvard edu
http://people.seas.harvard.edu/~salil/

ABOUT THE AUTHORS

JACK MURTAGH is a graduate student at Harvard University where he is advised by Salil
Vadhan. As an undergraduate, Jack studied mathematics at Tufts University. Jack is
broadly interested in complexity theory and currently works on derandomization and
data privacy.

SALIL VADHAN is the Vicky Joseph Professor of Computer Science and Applied Mathe-
matics at the Harvard John A. Paulson School of Engineering & Applied Sciences. He
received his Ph. D. under the supervision of Shafi Goldwasser at MIT in 1999; the title
of his dissertation was “A Study of Statistical Zero-Knowledge Proofs.” Other research
interests include the theory of pseudorandomness the theory and practice of data privacy.
He enjoys spending leisure time with his wife and two daughters, as well as learning to
surf in the cold waters of New England.

THEORY OF COMPUTING, Volume 14 (8), 2018, pp. 1–35 35

https://scholar.harvard.edu/jmurtagh
http://people.seas.harvard.edu/~salil/
https://scholar.harvard.edu/jmurtagh
https://toc.seas.harvard.edu/
http://people.seas.harvard.edu/~salil/
http://people.seas.harvard.edu/~salil/
http://math.tufts.edu/
https://www.tufts.edu/
https://privacytools.seas.harvard.edu/
http://people.seas.harvard.edu/~salil/
https://www.seas.harvard.edu/computer-science
https://www.seas.harvard.edu/applied-mathematics
https://www.seas.harvard.edu/applied-mathematics
http://www.seas.harvard.edu/
http://people.csail.mit.edu/shafi/
http://web.mit.edu/
http://people.seas.harvard.edu/~salil/research/phdthesis-abs.html
http://people.seas.harvard.edu/~salil/pseudorandomness/
https://privacytools.seas.harvard.edu/
http://dx.doi.org/10.4086/toc

	Introduction
	Our results

	Technical preliminaries
	Characterization of OptComp
	Hardness of OptComp
	Approximation of OptComp
	Comparison of composition theorems
	References

