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Abstract: A basic question in any model of computation is how to reliably compute a given
function when its inputs are subject to noise. Buhrman, Newman, Rohrig, and de Wolf (2003)
posed the noisy computation problem for real polynomials. We give a complete solution
to this problem. For any § > 0 and any polynomial p: {0,1}" — [—1, 1], we construct a
corresponding polynomial probust: R” — R of degree O(degp +1log1/0) that is robust to
noise in the inputs: |p(x) — probust(x + €)| < & for all x € {0,1}" and all € € [—1/3,1/3]".
This result is optimal with respect to all parameters. We construct pyopust €xplicitly for each p.
Previously, it was open to give such a construction even for p = x; G xp G - - - B x,, (Buhrman
et al., 2003). The proof contributes a technique of independent interest, which allows one to
force partial cancellation of error terms in a polynomial.
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1 Introduction

Noise is a well-studied phenomenon in the computing literature. It arises naturally in several ways. Most
obviously, the input to a computation can be noisy due to imprecise measurement or human error. In
addition, both the input and the intermediate results of a computation can be corrupted to some extent by
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a malicious third party. Finally, even in a setting with correct input and no third-party interference, errors
can be introduced by using a randomized algorithm as a subroutine in the computation. In all these settings,
one would like to compute the correct answer with high probability despite the presence of noise. A
matter of both theoretical and practical interest is how many additional resources are necessary to combat
the noise. Research has shown that the answer depends crucially on the computational model in question.
Models studied in this context include decision trees [21, 43, 19, 17, 38], circuits [40, 22, 18, 30, 52, 53],
broadcast networks [23, 36, 20, 38, 25, 14, 15], and communication protocols [45, 46, 7, 24]. Some
computational models exhibit a surprising degree of robustness to noise, in that one can compute the
correct answer with probability 99% with only a constant-factor increase in cost relative to the noise-free
setting. In other models, even the most benign forms of noise increase the computational complexity by a
superconstant factor.

In most cases, one can overcome the noise by brute force, with a logarithmic-factor increase in
computational complexity. In a noisy decision tree, for example, one can repeat each query a logarithmic
number of times and use the majority answer. Assuming independent corruption of the queries, this
strategy results in a correct computation with high probability. Similarly, in a noisy broadcast network
one can repeat each broadcast a logarithmic number of times and take the majority of the received bits.
It may seem, then, that noise is an issue of minor numerical interest. This impression is incorrect on
several counts. First, in some settings such as communication protocols [45, 46, 7, 24], it is nontrivial to
perform any computation at all in the presence of noise. Second, even a logarithmic-factor increase in
complexity can be too costly for some applications [42]. Third and most important, the question at hand
is a qualitative one: is it possible to arrange the steps in a computation so as to cause the intermediate
errors to almost always cancel? This study frequently reveals aspects of the model that would otherwise
be overlooked.

Our problem

The computational model of interest to us is the real polynomial. In this model, the complexity measure of
a Boolean function f: {—1,+1}" — {—1,+1} is the least degree of a real polynomial that approximates
f pointwise. Formally, the approximate degree of f, denoted deg(f), is the least degree of a real
polynomial p with | f(x) — p(x)| < 1/3 for every x € {—1,+1}". The constant 1/3 is chosen for aesthetic
reasons and can be replaced by any other in (0, 1) without changing the model. The approximate degree
of Boolean functions has been studied for over forty years and has enabled spectacular progress in circuit
complexity [39, 51, 6, 3, 34, 35, 49, 5], quantum query complexity [4, 9, 2, 1, 29], communication
complexity [12, 41, 11, 42, 47], and computational learning theory [54, 31, 28, 32, 33, 48, 50].

The contribution of this paper is to answer a question posed ten years ago by Buhrman et al. [10].
These authors asked whether real polynomials, as a computational model, are robust to noise. Robustness
to noise becomes an issue when one wants to do anything nontrivial with approximating polynomials,
e.g., compose them. To use a motivating example from [10], suppose that we have approximating
polynomials p and g for Boolean functions f: {—1,+1}" — {—1,+1}and g: {—1,+1}" — {—1,+1},
respectively. Having these two polynomials gives us no way whatsoever to approximate the composed
function f(g,g,...,g) on nm variables. In particular, the natural construction p(q,q,...,q) does not work
because g can range anywhere in [—4/3,—2/3]U[2/3,4/3] and the behavior of p on non-Boolean inputs
can be arbitrary. In other words, the problem is that the output of g is inherently noisy, and the original
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polynomial p is not designed to handle that noise. What we need is a robust approximating polynomial
for f, to use the term introduced by Buhrman et al. [10]. Formally, a robust approximating polynomial
for f is a real polynomial pyopus: R” — R such that

1
| f(X) = Probust(x +€)| < 3

for every x € {—1,+1}" and every € € [—1/3,1/3]". Thus, a robust polynomial approximates f not only
on Boolean inputs but also on the larger domain [—4/3,—2/3]U[2/3,4/3]. Robust polynomials compose
in the natural way: to use the notations of this paragraph, the polynomial probust(q, ¢, ---,¢q) is a valid
approximating polynomial for f(g,g,...,8).

The obvious question is whether robustness comes at a cost. Ideally, one would like to make an
approximating polynomial robust with only a constant-factor increase in degree, so that every Boolean
function f would have a robust polynomial of degree ®(deg(f)). Analogous to noisy decision trees
and broadcast networks, a fairly direct calculation shows that every Boolean function f: {—1,+1}" —
{—1,41} has a robust polynomial of degree O(deg (f)logn). Buhrman et al. [10] improved this bound
to min{O(n), O(deg (f)log deg(f))} using combinatorial arguments and quantum query complexity.
In particular, the work of Buhrman et al. shows that parity, majority, and random functions—all of
which have approximate degree ®(n)—also have robust approximating polynomials of degree ®(n). The
authors of [10] asked whether every Boolean function f has a robust approximating polynomial of degree

©(deg(f)).

Our result

We give a complete solution to the problem of Buhrman et al. [10]. To be precise, we study a more
general question. Buhrman et al. [10] asked whether a polynomial p can be made robust with only a
constant-factor increase in degree, provided that p approximates a Boolean function. We prove that
every polynomial p: {—1,4+1}" — [—1, 1] can be made robust, regardless of whether p approximates a
Boolean function.

Theorem 1.1. Let p: {—1,+1}" — [—1,1] be a given polynomial. Then for every & > 0, there is a
polynomial propust: R" — R of degree O(deg p +log1/d) such that

|p(x) = Probust(x+€)| < &
forallx € {—1,+1}" and € € [—1/3,1/3]". Furthermore, propus; has an explicit, closed-form description.

Theorem 1.1 shows that real polynomials are robust to noise. In this regard, they behave differently
from other computational models such as decision trees [21] and broadcast networks [25], where handling
noise provably increases the computational complexity by a superconstant factor. In fact, Theorem 1.1
reveals a very high degree of robustness: the degree of a §-error robust polynomial grows additively rather
than multiplicatively with the error parameter 0, and the actual dependence on § is logarithmic. This
dependence on 9§ is best possible; see Remark 6.3 for details. Theorem 1.1 has the following consequence,
which the reader may find counterintuitive: high-degree polynomials are more easily made robust than
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low-degree polynomials, in the sense that a degree-d polynomial can be made robust within error 2~
with only a constant-factor increase in degree.

A final point of interest is that Theorem 1.1 gives an explicit, formulaic construction of a robust
polynomial ppopyst in terms of the original polynomial p. Prior to this work, no explicit robust construction
was known even for the parity polynomial p(x) = xjx; - - -x,. To quote Buhrman et al. [10], “We are not
aware of a direct ‘closed form” or other natural way to describe a robust degree-O(n) polynomial for the
parity of n bits, but can only infer its existence from the existence of a robust quantum algorithm. Given
the simplicity of the non-robust representing polynomial for parity, one would hope for a simple closed
form for robust polynomials for parity as well.”

As a consequence of Theorem 1.1, we conclude that the approximate degree behaves nicely under
function composition:

Corollary. For all Boolean functions f and g,

deg(f(g,8,---,8)) = O(deg (f) deg(g))-

Prior to this paper, this conclusion was known to hold only for several special functions, e.g., [8, 27, 10],
and required quantum query arguments.

Our techniques

We will now overview the techniques of previous work and contrast them with the approach of this
paper. Using a remarkable quantum query argument, Buhrman et al. [10] gave a robust approximating
polynomial of degree O(deg(f)) for every symmetric Boolean function f as well as every Boolean
function f with approximate degree ®(n). Unfortunately, the quantum argument does not seem to
generalize beyond these two important cases. With an unrelated, combinatorial argument, the authors
of [10] obtained an upper bound of O(deg (f)log deg(f)) on the degree of a robust polynomial for
any given Boolean function f. This combinatorial argument also seems to be of no use in proving
Theorem 1.1. For one thing, it is unclear how to save a logarithmic factor in the combinatorial analysis,
and more fundamentally, the combinatorial argument only works for approximating Boolean functions
rather than arbitrary real functions {—1,4+1}" — [—1,1].

We approach the problem of robust approximation differently, with a direct analytic treatment rather
than combinatorics or quantum query complexity. Our solution comprises three steps, corresponding to
functions of increasing generality:

(i) robust approximation of the parity polynomial, p(x) = x1x2 - - - X3
(ii) robust approximation of homogeneous polynomials, p(x) = Y is|=aasliesxis
(iii) robust approximation of arbitrary polynomials.

For step (i), we construct an exact representation of the sign function on the domain [—4/3,—-2/3]U
[2/3,4/3] as an analytic series whose coefficients decrease exponentially with degree. Multiplying n such
series, we show that the resulting coefficients decay rapidly enough to allow truncation at degree O(n).
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For step (iii), we write a general polynomial p: {—1,41}" — [—1, 1] as the sum of its homogeneous
parts p = po+ p1+p2+---+ pa, where d is the degree of p. Using approximation theory and a convexity
argument, we show that || p;|| < 29 for all i. For our purposes, this means that a robust polynomial
for p can be obtained by summing robust polynomials for all p; with sufficiently small error, 2~
Obtaining such a polynomial for each p; is the content of step (ii).

Step (ii) is the most difficult part of the proof. A natural approach to the robust approximation of a
homogeneous polynomial p is to robustly approximate every monomial in p to within a suitable error 8,
using the construction from step (i). Since we want the robust polynomial for p to have degree O(d), the
smallest setting that we can afford is § = 2-©(@)_ Unfortunately, there is no reason to believe that with this
0, the proposed robust polynomial will have small error in approximating p. As a matter of fact, a direct
calculation even suggests that this approach is doomed: it is straightforward to verify that a homogeneous
polynomial p: {—1,+1}" — [—1,1] of degree d can have (’}) monomials, each equal to & (2n(})) -1/2,
which suggests that the proposed approximant for p could have error as large as

()

Surprisingly, we are able to show that the proposed robust approximant for p does work and furthermore
has excellent error, 2~ (@),

We now describe step (ii) in more detail. The naive, term-by-term error analysis above ignores
key aspects of the problem, such as the convexity of the unit cube [—1,1]", the metric structure of the
hypercube {—1,+1}", and the multilinearity of p. We contribute a novel technique that exploits these
considerations. In particular, we are able to express the error in the proposed approximant at any given
point z € ([—4/3,—2/3]U[2/3,4/3])" as a series

ZaiP(Zi) )
i=1

where each z; = z;(z) is a suitable point in [—1, 1], and the coefficients in the series are small and decay
rapidly: ¥, |a;] <27©@ . Since p is bounded by 1 in absolute value on the hypercube {—1,41}", it is
also bounded by 1 inside the convex cube [—1,1]", leading to the desired error estimate. In words, even
though the error in the approximation of an individual monomial is relatively large, we show that the
errors across the monomials behave in a coordinated way and essentially cancel each other out.

2 Notation and preliminaries

Throughout this manuscript, we represent the Boolean values “true” and “false” by —1 and +1, re-
spectively. In particular, Boolean functions are mappings f: X — {—1,+1} for some finite set X
such as X = {—1,+1}". The natural numbers are denoted N = {0,1,2,3,...}. The symbol logx
denotes the logarithm of x to base 2. For a string x € R” and a set S C {1,2,...,n}, we adopt the
shorthand x[s = (x;,,%;,, ..., Xy ) € RIS where i} < iy < --- < ijs| are the elements of S. The family
of all subsets of a given set X is denoted P(X). The symbol S, stands for the group of permutations
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o:{1,2,...,n} = {1,2,...,n}. A function ¢ : R" — R is called symmetric if ¢ is invariant under per-
mutations of the variables, i.e., ¢(x) = O (X5(1),Xo(2)s - - - ,xc,(n)) for all ¢ € S,,. We adopt the standard
definition of the sign function:

—1 ifr <0,
sgnt =<0 ift =0,
1 ift>0.

For a set X, we let RX denote the real vector space of functions X — R. For ¢ € RX, we write

19l = sup ¢ (x)], o[l =Y [,
xeX

xeX

where the symbol ||@||; is reserved for finite X. By the degree of a multivariate polynomial p on R”,
denoted deg p, we shall always mean the total degree of p, i. e., the greatest total degree of any monomial
of p. The symbol P; stands for the family of all univariate real polynomials of degree up to d. For a
natural number i and a real o, the generalized binomial coefficient (“) is given by

(oc) o(oc—1)-(a—i+1) |

i i!

The following identity is well-known and straightforward to show [26, p. 186]:
~1/2 1\’ (2
(7)) () &
i 4 i

Consider the vector space of functions {—1,+1}" — R. For § C {1,2,...,n}, define xs: {—1,+1}" —
{=1,41} by xs(x) = [Liesx;- Then the functions ys, S C {1,2,...,n}, form an orthogonal basis for the
vector space in question. In particular, every function ¢ : {—1,41}" — R has a unique representation as
a linear combination of the characters Js:

o= Y 0z,

Sg{1727*n}

Fourier transform

where ¢(S) =27"Y,c (=141} 9 (x) xs(x) is the Fourier coefficient of ¢ that corresponds to the character
Xs- Note that

deg ¢ = max{|S|: ¢(S) # 0} .

Formally, the Fourier transform is the linear transformation ¢ — ¢, where ¢ is viewed as a function
P({1,2,...,n}) = R. In particular, we have the shorthand

Iolhi="3Y [9(S)I.

SC{1,2,...,n}
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Multilinear extensions and convexity

As the previous paragraph shows, associated to every mapping ¢ : {—1,+1}" — R is a unique multilinear
polynomial ¢ : R” — R such that ¢ = ¢ on {—1,-+1}". In discussing the Fourier transform, we identified
¢ with its multilinear extension ¢ to R”, and will continue to do so throughout this paper. Among other
things, this convention allows one to evaluate ¢ everywhere in [—1,1]" as opposed to just {—1,+1}". It
is a simple but important fact that for every ¢: {—1,+1}" —» R,

max |¢(x)] = max [§(x)]=[¢].

xe[-1,1]* xe{—1,+1}"

To see this, fix & € [—1,1]" arbitrarily and consider the probability distribution on strings x € {—1,+1}"
whereby xi,...,x, are distributed independently and E[x;] = & for all i. Then ¢(&) = E[¢(x)] by
multilinearity, so that [¢(§)] < max,e(_ 41} |9 (x)].

3 A robust polynomial for parity

The objective of this section is to construct a low-degree robust polynomial for the parity function. In
other words, we will construct a polynomial p: R" — R of degree O(n) such that p(x;,x2,...,x,) =
[Tsgnx; whenever the input variables are close to Boolean: xj,x;,...,x, € [—4/3,-2/3]U[2/3,4/3].
Recall that our eventual goal is a robust polynomial for every bounded real function. To this end, the
parity approximant p that we are to construct needs to possess a key additional property: the error
p(x) — [1sgnx;, apart from being small, needs to be expressible as a multivariate series in which the
coefficients decay rapidly with monomial order.

To obtain this coefficient behavior, we use a carefully chosen approximant for the univariate function
sgnt. The simplest candidate is the following ingenious construction due to Buhrman et al. [10]:

—2d Z () (1—1)*".
=[d/2)

In words, By(t) is the probability of observing more heads than tails in a sequence of d independent coin
flips, each coming up heads with probability z. By the Chernoff bound, By sends [0, 1/4] — [0,27%()]
and similarly [3/4,1] — [1 =272 1]. As Buhrman et al. [10] point out, this immediately gives a
degree-d approximant for the sign function with exponentially small error on [—4/3,—2/3]U[2/3,4/3].
Unfortunately, the coefficients of B; do not exhibit the rapid decay that we require. Instead, in what
follows we use a purely analytic construction based on the Maclaurin series for 1/1/1 +1.

Lemma 3.1. For x1,x3,...,%, € (—/2,0)U(0,v/2),

Sg(Xpxy - +Xy) = X120 Xy Y H(—) (2?)()@—1)"}‘. 3.1

i1,00,...,ix €N j=1
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Proof. Recall the binomial series (1+1)% = Y72 ()¢, valid for all =1 < <1 and all real &. In
particular, setting & = —1/2 gives
1

a5
Ve AN
> 1\ (20
_§)<_4> <i>t’ —1<t<1, (3.2)

where the second step uses (2.1). One easily verifies that this absolutely convergent series is the Maclaurin
expansion for 1/+/1+¢. For all real # with 0 < |¢| < v/2, we have

B t - AR AL AVEIIY
sgnt—1+<t2_1)—t;)< 4) (i)(t 1), (3.3)

where the second step holds by (3.2). For x1,x2,...,%, € (—/2,0)U(0,+/2), it follows that

sgn(x1x2 ... x,) :xlxz...xnﬁ{i <_£11>i (211) (x?—l)’}

j=1 L i=0

=xix2 XY ﬁ(—i)ij<2iij>(x§—1)if. 0

i1,02,..,in€N  j=1

s

We have reached the main result of this section.

Theorem 3.2 (Robust polynomial for the parity function). Fix € € [0,1) and let

X=[-VI+e,~V1-¢glU[V1—¢1+¢g|.

Then for every integer N > 1, there is an (explicitly given) polynomial p: R" — R of degree at most
2N + n such that

N
n}l(alllx]sgn(xlxz-'-xn) —px)| <eV(1 —1—8)”/2< ;n>n (3.4)

Setting € = 7/9 and N = 22n in this result, we infer that the function sgn(xjx; - - -x,) with inputs
X1,X2,...,%n € [—4/3,—2/3]U[2/3,4/3] can be approximated to within 2" everywhere by a polynomial
of degree O(n). This is the desired robust polynomial for parity.

Proof of Theorem 3.2. 1f € > N /(N + n), the right-hand side of (3.4) exceeds
N
N N+n > 1
N-+n N -
and therefore the theorem holds trivially with p = 0. In what follows, we treat the complementary case:

N
0<e< .
~— T N+4n

(3.5)
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For a natural number d, let J; stand for the family of n-tuples (ij,...,i,) of nonnegative integers such
that i; 4 --- +1i, = d. Clearly,
d+n—1
- (7Y

One can restate (3.1) in the form

SEN(X1Xp <+ Xy) = XX Xy Z Ealx1, X2,y %), (3.6)
d=0
where
2i1 21
éd(xl,xz,...,xn): Z H (xj—l)f.
(i1y0esin)€Jg J=1 ij
On X",

d+n—1
el < e = (7571,

As a result, dropping the terms &y 1,Ey12,... from the series (3.6) results in an approximant of degree
2N + n with pointwise error at most

d+n—1 N+n\ & N+n\?
n/2 < (1 n/2 nN+1 .
1+¢) Z < >—( +e)"e <N+1>;;)<8 N+1>

d=N+1
N+n\ &/ N ¢
< (14¢)/2eNt! — by (3.5
(e e vy ;0 N+l y(3-3)

:(1+£)”/28N+1<N;n)n. O

4 Reduction to homogeneous polynomials

We now turn to the construction of a robust polynomial for any real function on the Boolean cube. Real
functions given by homogeneous polynomials on {—1,41}" are particularly convenient to work with,
and the proof is greatly simplified by first reducing the problem to the homogeneous case.

To obtain this reduction, we need a bound on the coefficients of a univariate polynomial in terms
of its degree d and its maximum absolute value on the interval [—1, 1]. This fundamental problem was
solved in the nineteenth century by V. A. Markov [37, p. 81], who proved an upper bound of

o <(1+\/\§§)d> 4.1

on the size of the coefficients of any degree-d polynomial that is bounded on [—1, 1] in absolute value
by 1. Markov further showed that (4.1) is tight. Rather than appeal to this deep result in approximation
theory, we give a first-principles proof of a 4¢ bound which suffices for our purposes.
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Lemma 4.1 (Coefficients of bounded polynomials). Let p(t) = Y ait’ be a given polynomial. Then

d—2j
p<d>‘ . 4.2)

Proof. We will use a common approximation-theoretic technique [13, 44] whereby one expresses p as
a linear combination of more structured polynomials and analyzes the latter objects. For this, define

QOaQIa"'7Qd€Pd by

L (=Dfa? (a\ & d—2i o
q(t) = S5 (j)g<t— y ) j=0,1,....d. (4.3)

i#]

Z]al\ <49 max
par j=0,1,....d

One easily verifies that these polynomials behave like delta functions, in the sense that for i, j =

0,1,2,....d,
(d—2i>_ 1ifi=j,
i d |0 otherwise.

& (d-2
p= ZP( ]> (4.4)

By (4.3), the absolute values of the coefficients of g; sum to at most

dd (d\ \d — 2il 1 /d 1 d
d'2? (J)H( T ) d12¢ (J) d+|d—2j] I,-:Io< tla =2

i=0
i#]

Lagrange interpolation gives

1 (d 1 L4/2] d
=— (%) ——— ] (2a—2i 2i
d!zd(j> arja—zy L= 11 @)

i=|d/2|+1

1 [/d 24+l d! d!
- d!2d<j> ‘d+1d—2j] ([d/2]-1)! [d/2]!
- (i) d+ rfzd—zjr (@zﬂ)
=()

In view of (4.4), we conclude that the absolute values of the coefficients of p sum to at most

d—2j J d—2j
2 —4 S N 0
(e o () 52 () = o o (557

We are now prepared to give the desired reduction to the homogeneous case.
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Theorem 4.2. Let ¢: {—1,+1}" — R be a given function, degd =d. Write ¢ = o+ ¢1+ -+ @a,
where ¢;: {—1,+1}" — R is given by ¢; = Z‘S‘:i(ﬁ(S)xs. Then
H(Pi“mgél'd”q)”m? i=0,1,....d.

The above result gives an upper bound on the infinity norm of the homogeneous parts of a polynomial
¢ in terms of the infinity norm of ¢ itself. Note that the bound is entirely independent of the number
of variables. For our purposes, Theorem 4.2 has the following consequence: a robust polynomial for ¢
can be obtained by constructing robust polynomials with error 2~ ||¢|| separately for each of the
homogeneous parts. The homogeneous problem will be studied in the next section.

Proof of Theorem 4.2. Pick a point x € {—1,+1}" arbitrarily and fix it for the remainder of the proof.
Consider the univariate polynomial p € P; given by

d
pt) = ;)¢i(X)fi-

For —1 <t < 1, consider the probability distribution (1, on the Boolean cube {—1,+1}" whereby each
bit is independent and has expected value ¢. Then

() E !Hx,-z,-]

Hence, p is bounded on [—1, 1] in absolute value by || ||.. By Lemma 4.1, it follows that the coefficients
of p do not exceed 47||¢||o.:

190 > ZNEM[¢<xm,.‘.7xnzn>1‘ - b0,

ieS

Z ()" Hxi
IS|<d

|0:0)] < 4719

Since the choice of x € {—1,+1}" was arbitrary, the theorem follows. O

5 Error cancellation in homogeneous polynomials

Recall that the goal of this paper is to construct a degree-O(d) robust polynomial for every degree-d
real function ¢: {—1,+1}" — [—1,1]. By the results of Section 4, we may now assume that ¢ is
homogeneous:

0=Y ¢(S)xs-

|S|=d

A naive approach would be to use the construction of Section 3 and robustly approximate each parity
%s to within 27 by a degree-O(d) polynomial. Unfortunately, it is unclear whether the resulting
polynomial would be a good approximant for ¢. Indeed, as explained in the introduction, the cumulative
error could conceivably be as large as n*(@)2-0(@) s, 1 The purpose of this section is to prove that, for
a careful choice of approximants for the xs, the errors do not compound but instead partially cancel,
resulting in a cumulative error of 2-©(@)_ The proof is rather technical. To simplify the exposition, we first
illustrate our technique in the simpler setting of {—1,+1}" and then adapt it to our setting of interest, R”.
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Error cancellation on the Boolean hypercube

Let ¢: {—1,41}" — R be a degree-d homogeneous polynomial. Our goal is to show that perturbing the
Fourier characters of ¢ in a suitable, coordinated manner results in partial cancellation of the errors and
does not change the value of ¢ by much relative to the norm || ||. A precise statement follows.

Theorem 5.1. Let ¢: {—1,+1}" — R be given such that ¢(S) = 0 whenever |S| # d. Fix an arbitrary
symmetric function 8 : {—1,+1}¢ — R and define A: {—1,+1}" — R by

Alx) =), $(5)8(xls).

IS|=d
Then

dd
< —

1911151 -

In the above result, § should be thought of as the error in approximating individual characters X,
whereas A is the cumulative error so incurred. The theorem states that the cumulative error exceeds the
norm of ¢ and § by a factor of only e?, which is substantially smaller than the factor of n*@) growth that
one could expect a priori.

Proof of Theorem 5.1. We adopt the convention that a° = 1 for all real a. For a given vector v € {0,1}¢,
consider the operator A, that takes a function f: {—1,41}" — R into the function A, f: {—1,+1}" - R
where

Af)x)= E

ze{-1,+1}4

1 L 1E
2122+ Zaf EZZI')CY’,...,EZZI'XZ‘ .
i=1 i=1

This definition is meaningful because we identify f with its multilinear extension to [—1, 1]", thus making
it possible to evaluate f on inputs with fractional coordinates (see Section 2). It is important to note that
A, is a linear transformation in the vector space R{~1+1}". This somewhat magical operator is the key to
the proof; the remainder of the proof will provide insight into how this definition could have been arrived
at in the first place. To start with,

APl < = = o 5.1
40l < _max [0()|= _max [9(o)] = 0] 51)

where the second step holds by convexity. The strategy of the proof is to express A as a linear combination
of the A, ¢ with small coefficients. Since the infinity norm of any individual A, ¢ is small, that will give
the desired bound on the infinity norm of A.

To find what suitable coefficients would be, we need to understand the transformation A, in terms of
the Fourier spectrum. Since A, is linear and the nonzero Fourier coefficients of ¢ have order d, it suffices
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to determine the action of A, on the characters of order d. For every S C {1,2,...,n} with |S| =d

(Avxs)(x)= E [21Z2“'Zd H( ZZ; V‘)]

ZE{-L-’rl}d jes

= E E )
ze{-1,+1} [2122 “ T: S—{1,...d} ngr(/)x] ”
E [ZlZZ"'ZdHZr(j)] Hx;””] ,

E
T: 8—={l,...d} |ze{-1,+1}4 jes jes

(5.2)

where T chosen uniformly at random from all possible mappings S — {1,2,...,d}. The inner expectation
in (5.2) acts like the indicator random variable for the event that 7 is a bijection, i. e., it evaluates to 1

when 7 is a bijection and vanishes otherwise. As a result,

(Avxs)(x) = IT’[‘L' is a bijection] E [Hx

Tisa bljectlon]

jes
d!
= d Tg& [r (x)] -
|T|=vi++vy

By the symmetry of &,

d
8(x|s) = Z {1.2,....k}) Y xr(x)

7CS,
IT|=k

dd d d
_ E};S({l,z,...,k}) <k> (Agegacs) (1),

where the second step uses (5.3). Taking a weighted sum over S and using the linearity of A,,,

Y owsu = 5382 )(}) [ T a0 |0,
{z:

- ]

or equivalently

dl d
= 25 {1,2,...,k}) (k>A1k0dk¢.

In light of (5.1), this representation gives the sought upper bound on the norm of A:

d? A
Al < 2\5 {1,2,. !( >H¢\m=mH¢\mH5H].
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Error cancellation with real variables

We now consider the error cancellation problem in its full generality. Again, our goal will be to show that
replacing individual characters with suitable approximants results in moderate cumulative error. This
time, however, the input variables are no longer restricted to be Boolean, and can take on arbitrary values

n[—v1+¢€,—v1—¢€]U[\/1—¢€,+/1+¢]for0< e < 1. This in turn means that the error term will be
given by an infinite series. Another difference is that the coefficients of the error series will not converge
to zero rapidly enough, requiring additional ideas to bound the cumulative error.

Theorem 5.2. Let ¢: {—1,4+1}" — R be given such that $(S) = 0 whenever |S| # d. Let 0 < € < 1 and
=[-VI+e,—VI—€elU[V1i—g,VI+g|.

Then for every integer D > 1, there is an (explicitly given) polynomial p: R — R of degree at most
2D +d such that

obeys

d
malo(sgnn....osgn) — P09 < (1-+6)%% 56 (7 ) ¥ all. (5.4

Proof. As before, we adopt the notational convention that ¢° = 1 for all real a. We will follow the proof
of Theorem 5.1 as closely as possible, pointing out key differences as we go along.
If € > D/(D+d), then the right-hand side of (5.4) is at least

D D+d
(525) (°5 ol = -

and hence the theorem holds trivially with p = 0. In what follows, we treat the complementary case
€ <D/(D+d). To start with,

y e () (M) § e
gVt 1 M < gVt
veN: j=1 4 Vj veN?:
Vi+-tvg>D+1 <1 vi+-+vg>D+1

D+d+i

gD+l

Z<D+l+l>

< D+l D+d ¢l
- D+1 =

< (511) w( )l
- D+1 =

D+d
—sD+1< + )d, (5.5)
D

{aol:
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where the fourth line in the derivation uses € < D/(D+d). Define p by

= B o

vite+vg<D

Analogous to the Boolean setting, we will define functions to capture the error in approximating an
individual character as well as the cumulative error. Let §: X¢ — R and A: X" — R be given by

S(xieexg) = Y .ﬁ (—i)vj <2vv_j>xj(x§_ 1),

J
v+t >D+1

Alxy) = Y $(8)8(xls).
SQ{\;.‘ié.,n}

Lemma 3.1 implies that § is the error incurred in approximating a single character by p, in other words,
O(x1,...,xq) =sgn(xy---xg) — p(x1,...,x4). Hence, A captures the cumulative error:

A(x) = ¢(sgnxy,...,sgnx,) — P(x). (5.6)

Recall that our goal is to place an upper bound on ||A||... For v € N, consider the operator A, that
takes a function f: {—1,4+1}" — R into a function A, f: X" — R where

4 zixj (o5 —1)"
Z]ZQ"'de( Z iTe ,>]

Jjth coordinate

Af)x)=_ E

ze{-1,+1}4

The jth coordinate in this expression is bounded by 1 in absolute value because /1 — € < |x;| < /1 +¢€
on X". This definition departs from the earlier one in Theorem 5.1, where v was restricted to 0/1 entries.
Perhaps the most essential difference is the presence of scaling factors in the denominator—it is what
ultimately allows one to bound the cumulative error in the setting of an infinite series. Note that A, is a
linear transformation sending R{~1+1" into RX". We further have
lAv9]le < max ()| = max, |¢( )= l19]le, (5.7)
xe[—1,1]"

where the first step uses the fact that A,¢ has domain X" rather than all of R", and the second step holds
by convexity.

We proceed to examine the action of A, on the characters of order d. Since the definition of A, is
symmetric with respect to the n coordinates, it suffices to consider S = {1,2,...,d}:

4 zix( x - 1)
(Avx,.a)x) = E a2 ZdH Z

zG{—l,—H}d = gV,

Q \

1 dxx—l)
MTHH%]I_IJ ]
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where the first expectation is taken over a uniformly random mapping 7: {1,2,...,d} — {1,2,...,d}.
The expectation over z acts like the indicator random variable for the event that 7 is a bijection, i.e., it
evaluates to 1 when 7 is a bijection and vanishes otherwise. Thus,

1 o dxj(xF—1)"0)
(Avxq,..ay)(x) = m IT’[‘L' is a bijection] l;l [11:11 e

Tisa bijection]

1 d! d 5
= c— (x2 —1)%0)
(1+&)d/2gn+-+va qd G]GESd [JI:I]XJ(XJ 1) ] ' (5.8)

Now, consider the operator

d d Vi .
A= (1 +8)d/2 % Z {8V1+-~+vd H <_41‘.> <2v‘;/> } A,.

veN?: Jj=1
vi+-4vg>D+1

This operator is well-defined because by (5.5), the series in question converges absolutely. By (5.8), the
symmetry of &, and linearity, (Ay...q})(x) = 6(x1,...,Xq) . Since the definition of A is symmetric with
respect to the n coordinates, we conclude that

(A%s)(x) = 8 (x]s)

for all subsets S C {1,2,...,n} of cardinality d. As an immediate consequence,

A=Y S -(Axs)=A| Y S)xs | =40,

SC{1,2,...,n} SC{1,2,...,n}
IS|=d |S|=d
where the second step uses the linearity of A. In particular,
[Afl = [|A® [0
d4 d 1\ /2y;
i« Vit - J
<aref p el Il (5) (3
veN?: Jj=1 J
vi+-4vg>D+1
al D+d
< (1+¢€)¥? = ght! d|| |
<(+e) % 2419l
where the final step follows by (5.5) and (5.7). In light of (5.6), the proof is complete. ]

6 Main result

We are now in a position to prove the main result of this paper, which states that every bounded real
polynomial can be made robust with only a constant-factor increase in degree. Recall that we have
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already proved this fact for homogeneous polynomials (see Theorems 5.1 and 5.2). It remains to remove
the homogeneity assumption, which we will do using the technique of Section 4. For the purposes of
exposition, we will first show how to remove the homogeneity assumption in the much simpler context of
Theorem 5.1. Essentially the same technique will then allow us to prove the main result.

Theorem 6.1. Let ¢: {—1,+1}" — R be given, deg ¢ = d. Fix symmetric functions &;: {—1,+1} — R,
i=0,1,2,...,d, and define A: {71,+1}” — R by

=) () (xls).
1S|<d
Then
d S
1]l < (4)* 1|l Y l1oH]]1 -
i=0
The functions &, 4y, ..., 0y in this result are to be thought of as the errors in the approximation of
characters of orders 0, 1,...,d, respectively, and A is the cumulative error so incurred. As the theorem

shows, the cumulative error exceeds the norms of the functions involved by a factor of only 2°@)| which
is independent of the number of variables.

Proof of Theorem 6.1. We have
d
1Al < Y 1|, 6.1)
i=0

where A;: {—1,4+1}" — R is given by A;(x) = Z‘S‘:i(ﬁ(S)Si(xlg). For i = 0,1,...,d, consider ¢; =
Z|S|:,~<73(S)Xs, the degree-i homogeneous part of ¢. By Theorem 5.1,

Al < 1 9ille |51 - (6.2)

By Theorem 4.2,
19illee <4%@]lo,  i=0,1,....d. (6.3)
Combining (6.1)—(6.3) completes the proof. ]

We will now apply a similar argument in the setting of real variables.

Theorem 6.2 (Main Theorem). Let 0 < € < 1 and ¢: {—1,+1}" — [—1,1] be given, deg¢ =d. Then
for each & > 0, there is a polynomial P of degree

1 1
_ log —
0<1_8d+ 0g6>

such that
max |¢(sgnxy,...,sgnx,) —P(x)| <&, (6.4)
xXe

where X = [—1 —¢€,—1+¢€|U|[l —¢€,1 +€|. Furthermore, P is given explicitly in terms of the Fourier

spectrum of @.
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Letting € = 1/3 in this result settles Theorem 1.1 in the introduction.

Proof. We first consider 0 < £ < 1/10, in which case

1 1 1 1
—\/1+4,—\/1—4]u[1/1—4,\/1+4 . (6.5)

Let D =D(d,5) > 1 be a parameter to be chosen later. Fori =0, 1,...,d, consider ¢; = Z‘S‘:i(ﬁ(S)xS,
the degree-i homogeneous part of ¢. By Theorem 4.2,

X C

[19illo <4, i=0,1,....d. (6.6)

In light of (6.5), Theorem 5.2 gives explicit polynomials p;: R — R, i=0,1,2,...,d, each of degree at
most 2D +d, such that

. K4
max|g;(sgnxi,...sgne) = Y G(S)pilxls)| < 75 191l

SC{12,...,n}
|S|=i
for some absolute constant K > 1. Letting
P(x)="Y 0(S)ps(xls),
IS|<d

we infer that

K¢ d+1)(4K)?
max [ (sen, - senz) — P()] < o ) ol < LIS
i=0

where the last step uses (6.6). Therefore, (6.4) holds with D = O(d +1og1/9).

To handle the case 1/10 < € < 1, basic approximation theory [44] gives an explicit univariate
polynomial r of degree O(1/(1 —€)) that sends [—-1 —¢&,—1+¢] — [-11/10,—9/10] and [1 — ¢, 1+ €] —
[9/10,11/10]. In particular, we have | (sgnxy,...,sgnx,) — P(r(x;),...,r(x,))| < 8 everywhere on X",
where P is the approximant constructed in the previous paragraph. O

Remark 6.3. The degree of the robust polynomial in Theorem 1.1 grows additively with O(log1/6),
where § is the error parameter. As stated in the introduction, this dependence on 0 is best possible. To
see this, we may assume that p takes on —1 and +1 on the hypercube {—1,+1}"; this can be achieved
by appropriately translating and scaling p, without increasing its infinity norm beyond 1. Without loss
of generality, p(1,1,...,1) =1 and p(—1,—1,...,—1) = —1. As a result, the univariate polynomial
Probust(Z,1, - .. ,t) would need to approximate the sign function on [—4/3,—2/3]U[2/3,4/3] to within 8,
which forces deg(probust) > Q(log1/9) by basic approximation theory [16].
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