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Tight Bounds on the
Average Sensitivity of k-CNF
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Abstract: The average sensitivity of a Boolean function is the expectation, given a
uniformly random input, of the number of input bits which when flipped change the output
of the function. Answering a question by O’Donnell, we show that every Boolean function
represented by a k-CNF (or a k-DNF) has average sensitivity at most k. This bound is tight
since the parity function on k variables has average sensitivity k.
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1 Introduction and Results

For x ∈ {0,1}n and i ∈ {1, . . . ,n}, let xi denote x with the i-th bit flipped. Let f : {0,1}n→ {0,1} be a
Boolean function on n variables. The sensitivity of f at x, denoted by s( f ,x), is the number of bits i for
which f (x) 6= f (xi). The average sensitivity (also known as total influence) of f , denoted by S( f ), is the
expected sensitivity at a random input:

S( f ) =
1
2n ∑

x∈{0,1}n

s( f ,x) .

The average sensitivity is one of the most studied concepts in the analysis of Boolean functions (see,
e. g., [3, 4, 5, 7]).
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A literal is a Boolean variable or its negation. Let k be a nonnegative integer. A k-clause is a
disjunction of at most k literals, and a k-term is a conjunction of at most k literals. A k-CNF function is a
conjunction of k-clauses, and a k-DNF function is a disjunction of k-terms.

Boppana [1] proved that S( f ) ≤ 2k for every k-DNF (as well as k-CNF) function f . Recently,
Traxler [9] improved this upper bound to S( f )≤ 1.062k. This is nearly optimal, since the parity function
on k variables, which is obviously a k-CNF function, has average sensitivity k.

In this note, we close the gap by showing:

Theorem 1.1. If f is a k-DNF or k-CNF function, then S( f )≤ k.

This solves an open problem posed by O’Donnell in 2007 (see [6]).

2 Proof of Theorem 1.1

Our proof is a small modification of the proof of the 1.062k upper bound by Traxler [9], which is based
on a clever use of the Paturi-Pudlák-Zane algorithm (PPZ algorithm, in short) for k-SAT [8].

Let f be a k-CNF function. (The k-DNF case is dual.) Note that Traxler’s bound is in fact

S( f )≤ 2z log2(1/z)k

where z is the probability that f outputs 1. This upper bound is larger than k when 0.25 < z < 0.5.
We introduce the distribution D f over {0,1}n∪{⊥}, which is essentially identical to the distribution

used in Traxler’s proof.
Consider the algorithm eppz( f ) that takes f as input and tries to choose a satisfying assignment for f .

The algorithm first chooses uniformly at random some permutation π on the index set {1, . . . ,n} of the
variables. Then, for j = 1, . . . ,n, it does the following: it sets the variable xπ( j) to 1 if the single-variable
clause (xπ( j)) is in f and to 0 if the single-variable clause (xπ( j)) is in f . We say that in these two
cases “xπ( j) is forced.” Otherwise xπ( j) is set to 0 or 1 uniformly at random. Each time, the formula is
syntactically simplified, i. e., all clauses which became satisfied are deleted. At the end, the algorithm
outputs x. If the algorithm ever produces two contradictory unit clauses, then it just “gives up” and
outputs “⊥.”

Define D f as

D f (x) = Pr[eppz( f ) outputs x] ,

where the probability is over all the random choices made in eppz . In what follows, we are only interested
in the value of D f (x) for x ∈ f−1(1). Note that a similar algorithm was introduced in [2] for obtaining a
lower bound on the success probability of the PPZ algorithm.

For x ∈ f−1(1), let t( f ,π,x, i) denote the indicator variable for whether xi is forced or not, given that
π was chosen and x output.1 Note that given that π is chosen and x is output, all of the other random
choices of eppz( f ) are fixed; i. e., there is only one outcome that leads to a given π and x.

1If we borrow Traxler’s notation [9], t( f ,π,x, i) is defined as t( f ,π,x, i) = 1− (`0( f ,π,x, i)+ `1( f ,π,x, i)).
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The key observation that relates the distribution D f to the sensitivity of f is (essentially from [8])
that, for every x ∈ f−1(1), if f (x) 6= f (xi), i. e., f is sensitive at x for the i-th bit, then

Eπ [t( f ,π,x, i)]≥ 1
k
. (1)

We include the proof of Eq. (1) for completeness. If 1 = f (x) 6= f (xi) = 0, then there must be a clause
C such that the only literal in C set to 1 by x is the literal of the i-th variable. The variable xi is forced by
eppz if i appears last in π among all variable indices occurring in C. This happens with probability at
least 1/k since C has at most k literals. This establishes Eq. (1).

In order to show S( f ) ≤ k, it is enough to show that D f (x) ≥ s( f ,x)/2n−1k for every x ∈ f−1(1).
This is because we may combine ∑x∈ f−1(1) D f (x)≤ 1 (since D f is a distribution) with the elementary fact

S( f ) =
1

2n−1 ∑
x∈ f−1(1)

s( f ,x)

(see, e. g., [1, Lemma 1(b)]).
The proof is finished by observing

D f (x) = Eπ

[
n

∏
i=1

(
1
2

)1−t( f ,π,x,i)
]

=
1
2n Eπ

[
2∑

n
i=1 t( f ,π,x,i)

]
≥ 1

2n Eπ

[
2

n

∑
i=1

t( f ,π,x, i)

]
(since 2a ≥ 2a for all integers a≥ 0)

=
2
2n

n

∑
i=1

Eπ [t( f ,π,x, i)] (linearity of expectation)

≥ s( f ,x)
2n−1k

(by Eq. (1)).

This completes the proof of the theorem.
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