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1 Introduction

Many networks, including the Internet, are developed, built, and maintained by a large number of agents
(Autonomous Systems), all of whom act selfishly and have relatively limited goals. This naturally sug-
gests a game-theoretic approach for studying both the behavior of these independent agents and the
structure of the networks they generate. The stable outcomes of the interactions of non-cooperative self-
ish agents correspond to Nash equilibria. Typically, considering the Nash equilibria of games modeling
classical networking problems gives rise to a number of new issues. In particular, Nash equilibria in net-
work games can be much more expensive than the best centralized design. Papadgjttisaq the

term price of anarchyto refer to this increase in cost caused by selfish behavior. The price of anarchy
has been studied in a number of games dealing with various networking issues, such as load balanc-
ing [11, 12, 25, 29], routing [30, 31, 32, facility location [34], and flow control 2, 13, 33]. In some

cases 30, 31] the Nash equilibrium is unique, while in othei2y the best Nash equilibrium coincides

with the optimum solution and the authors study the quality of the worst equilibrium. However, in some
games the quality of even the best possible equilibria can be far from optimal (e. g. in the prisoner’s
dilemma). The best Nash equilibrium can be viewed as the best solution that selfish agents can agree
upon, i. e. once the solution is agreed upon, the agents do not find it in their interest to deviate. While the
price of anarchy is a measure of hésad an equilibrium can be, we study the complementary question

of howgoodan equilibrium can be in the context of a network design game. Schultz and&jistydy

the ratio of the best equilibrium to the optimum, in the context of a capacitated routing game. We call
this ratio theprice of stability a term introduced in4].*

In this paper we consider a simple network design game where every agent has a specific connectivity
requirement, i. e. each agent has a set of terminals and wants to build a network in which his terminals
are connected. Possible edges in the network have costs and each agent’s goal is to pay as little as
possible. This game can be viewed as a simple model of network creation. Alternatively, by studying
the best Nash equilibria, our game provides a framework for understanding those networks that a central
authority could persuade selfish agents to purchase and maintain, by specifying to which parts of the
network each agent contributes. An interesting feature of our game is that selfish agents will find it in
their individual interests tasharethe costs of edges, and so effectively cooperate.

More precisely, we study the following network game foplayers, which we call theonnection
game For each game instance, we are given a gi@phith non-negative edge costs. Except when
specified otherwise, we will assume tl@is undirected. Players form a network by purchasing some
subgraph ofs. Each player has a set of specified terminal nodes that he would like to see connected in
the purchased network. With this as their goal, players offer payments indicating how much they will
contribute towards the purchase of each edd8.iif the players’ payments for a particular edgsum
to at least the cost & then the edge is considerbdught which means that is added to our network
and can now be used by any player. Each player would like to minimize his total payments, but insists
on connecting all of his terminals. We allow the cost of any edge to be shared by multiple players. Fur-
thermore, once an edge is purchased, any player can use it to satisfy his connectivity requirement, even
if that player contributed nothing to the cost of this edge. Finding the centralized optimum of the con-
nection game, i. e. the network of bought edges which minimizes the sum of the players’ contributions,

1in the conference version of our paper we used the ttimistic price of anarchjnstead.
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is the classic network design problem of the generalized Steinerliré6][ We are most interested in
deterministic Nash equilibria of the connection game, and in the price of stability, as the price of anarchy
in our game can be quite bad. In a game theoretic context it might seem natural to also aninsider

Nash equilibria when agents can randomly choose between different strategies. However, since we are
modeling the construction of large-scale networks, randomizing over strategies is not a realistic option
for players.

Ourresults  We study deterministic Nash equilibria of the connection game, and prove bounds on the
price of stability. We also explore the notion of approximate equilibriumand study the question of
how far from a true equilibrium one has to get to be able to use the optimum solution, i. e. how unhappy
would the agents have to be if they were forced to pay for the socially optimal design. We view this as a
two parameter optimization problem: we would like to have a solution with cost close to the minimum
possible cost, and where users would not have large incentives to deviate. Finally, we examine how
difficult it is to find equilibria at all.

Our results include the following.

¢ In Section3 we consider the special case when the goal of each player is to connect a single termi-
nal to a common source. We prove that in this case, there is a Nash equilibrium, the cost of which
is equal to the cost of the optimal network. In other words, with a single source and one terminal
per player, the price of stability is 1. Furthermore, giverean 0 and anx-approximate solution
to the optimal network, we show how to construct in polynomial tini&-& € )-approximate Nash
equilibrium (players only benefit by a factor gf + ¢) in deviating) whose total cost is within a
factor of o to the optimal network.

We generalize these results in two ways. First, we can extend the results to the case when the
graph is directed and players seek to establish a directed path from their terminal to the common

source. Note that problems in directed graphs are often significantly more complicated than their

undirected counterpart8,[16]. Second, players do not have to insist on connecting their terminals

at all cost, but rather each playienay have a maximum cost m@xthat he is willing to pay, and

would rather stay unconnected if his cost exceeds(max

¢ In Sectiond we consider the general case, when players may want to connect more than 2 termi-
nals, and they do not necessarily share a single source node. In this case, there may not exist a
deterministic Nash equilibrium. When deterministic Nash equilibria do exist, the costs of different
equilibria may differ by as much as a factor Mf the number of players, and even the price of
stability may be nearl\N. However, inSection4 we prove that there is always a 3-approximate
equilibrium that pays for the optimal network. Furthermore, we show how to construct in poly-
nomial time a(4.65+ €)-approximate Nash equilibrium whose total cost is within a factor of 2 to
the optimal network.

e Finally, in Section5 we show that determining whether or not a Nash equilibrium exists is NP-
complete when the number of players is part of the input. In addition, we give a lower bound on
the approximability of a Nash equilibrium on the centralized optimum in our game.
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Related work We view our game as a simple model of how different service providers build and main-
tain the Internet topology, or how companies with different interests build transportation networks. We
use a game theoretic version of network design problems considered in approximation algdrélfims [
Fabrikant et al.15] study a different network creation game. Network games similar to thdphpve

also been studied for modeling the creation and maintenance of social netdk [In the network

game considered irY[ 15, 20, 3] each agent corresponds to a single node of the network, and agents can
only buy edges adjacent to their nodes. This model of network creation seems extremely well suited for
modeling the creation of social networks. However, in the context of communication networks like the
Internet, as well as in transportation networks, agents are not directly associated with individual nodes,
and can build or be responsible for more complex networks. There are many situations where agents
will find it in their interest tosharethe costs of certain expensive edges. An interesting feature of our
model which does not appear in [L5, 20] is that we allow agents to share costs in this manner. To keep
our model simple, we assume that each agent’s goal is to keep his terminals connected, and agents are
not sensitive to the length of the connecting path.

Since the conference version of this papat fhere have been several new papers about the con-
nection game, e.g.14, 22, 21, 23, 11, 6]. Probably the most relevant such model to our research is
presented in4] (and further addressed i®,[10, 18]). In [4], extra restrictions of “fair sharing” are
added to the Connection Game, making it a congestion gasjepd thereby guaranteeing some nice
properties, like the existence of Nash equilibria even with multiple terminals per player, and a bounded
price of stability. While the connection game is not a congestion game, and is not guaranteed to have a
Nash equilibrium, it actually behaves much better thdrwjhen all the agents are trying to connect to
a single common node. Specifically, the price of stability in that case is 1, while the mod¢hiag a
price stability of@(logn) when edges are directed. Moreover, all such models (including cost-sharing
models described below) restrict the interactions of the agents to improve the quality of the outcomes,
by forcing them to share the costs of edges in a particular way. This does not address the contexts when
we are not allowed to place such restrictions on the agents, as would be the case when the agents are
building the network together without some overseeing authority. However, as we show in this paper, is
still possible to nudge the agents into an extremely good outcome without restricting their behavior in
any way.

Jain and VaziraniZ4] study a different cost-sharing game related to Steiner trees. They assume
that each player has a utilityy; for belonging to the Steiner tree, and thiais a private value. Their
goal is to give a truthful mechanism to build a Steiner tree, and decide on cost-shares for each agent
(where the cost charged to an agent may not exceed his utility). They design a mechanism where truth-
telling is a dominant strategy for the agents, i. e. selfish agents do not find it in their interest to misreport
their utility (in hopes of being included in the Steiner tree for smaller costs). Jain and Vazirani give
a truthful mechanism to share the cost of the minimum spanning tree, which is a 2-approximation for
the Steiner tree problem. This game has some similarities with our single source network creation game
considered irsection3. We can view the maximum payment nigxof agent as his utilityu;. However,
our game has no central authority designing the Steiner tree or cost shares. Instead, ours is a game of
full information, and we focus primarily on evaluating the Nash equilibria. Also, in our game, agents
must offer payments for each edge of the tree (modeling the cooperation of selfish agents), while in a
mechanism design framework, agents pay the mechanism for the service, and do not care what edge
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they contribute to.
Finally, [5] is the conference version of this paper. It differs in several respects, most notably in the
proofs ofSection4.

2 Model and basic results

The connection game We now formally define the connection game foplayers. Let an undirected
graphG = (V,E) be given, with each edgehaving a nonnegative coste). Each player has a set of
terminal nodes that he must connect. The terminals of different players do not have to be distinct. A
strategy of a player is a payment functipf wherep;(e) is how much player is offering to contribute

to the cost of edge. Any edgee such thaty; pi(e) > c(e) is consideredought andG, denotes the
graph of bought edges with the players offering payments(ps, ..., pn). Any player whose terminals

are not all connected i, incurs an infinite penalty. Otherwise, a player simply pays the sum of his
edge contributionsy ¢¢ pi(€), and seeks to minimize this total payment.

A Nash equilibrium of the connection game is a payment funcposuch that, if players offer
paymentsp, no player has an incentive to deviate from his payments. This is equivalent to saying that
if p; for all j # i are fixed, therp; minimizes the payments of player A (1+ ¢)-approximate Nash
equilibrium is a functionp such that no playercould decrease his payments by more than a factor of
1+ € by deviating, i. e. by using a different payment functigh

Some properties of Nash equilibria Here we present several useful properties of Nash equilibria in
the Connection Game. Suppose we have a Nash equiligiubhen it follows from the definitions that
(1) Gy is a forest. Furthermore, if we |8t be the smallest tree B, connecting all terminals of player

i, then (2) each playéronly contributes to costs of edges ©h Finally, (3) each edge is either paid for
fully or not at all.

Property 1 holds because if there was a cycl&j any player paying for any edge of the cycle
could stop paying for that edge and decrease his payments while his terminals would still remain con-
nected in the new graph of bought edges. Similarly, Property 2 holds since if plagetributed to an
edgee which is not inT', then he could take away his payment émnd decrease his total costs while
all his terminals would still remain connected. Property 3 is true becauseai$ paying something for
e such thaty; pi(e) > ce or ce > ¥ pi(e) > 0, theni could take away part of his payment feand not
change the graph of bought edges at all.

Nash equilibria may not exist It is not always the case that selfish agents can agree to pay for a
network. There are instances of the connection game which have no pure Nash equilibria (equilibria
in which players do not randomize over strategies).Figure 1, there are 2 players, one wishing to
connect node; to nodets, and the othes, to t,. Now suppose that there exists a Nash equilibrium

By Property 1 above, in a Nash equilibriu& must be a forest, so assume without loss of generality it
consists of the edges b, andc. By Property 2, player 1 only contributes to edgeandb, and player 2

only contributes to edgdsandc. This means that edgaesandc must be bought fully by players 1 and

2, respectively. At least one of the two players must contribute a positive amount tt.eHigevever,
neither player can do that in a Nash equilibrium, since then he would have an incentive to switch to the
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Figure 2: A game with only fractional Nash equilibria.

strategy of only buying edge and nothing else, which would connect his terminals with the player’s
total payments being only 1. Therefore, no Nash equilibria exist in this example.

Fractional Nash equilibria.  When looking at the connection game, we might be tempted to assume
that giving players the opportunity to share costs of edges is an unnecessary complication. However,
sometimes players must share costs of edges for all players to agree on a network. There are game
instances where the only Nash equilibria in existence require that players split the cost of an edge. We
will call such Nash equilibridractional and we will call Nash equilibria that do not involve players
sharing costs of edge®mn-fractional

In Figure Za) we have an example of a connection game instance where the only Nash equilibria
are fractional ones. Once again, player 1 would like to conseandt;, and player 2 would like to
connects, andt,. First, note that there is a fractional Nash equilibrium, as showkigare 4b), with
the contribution of player 1 (2) indicated with a thick black (gray) line. Here player 2 contributes 5 to
edgee and player 1 contributes 1 mand 3 to both o andc. It is easy to confirm that neither player
has an incentive to deviate.

Now we must show that there are no non-fractional Nash equilibria in this example. Observe that
if edgee is not bought, then we have a graph which is effectively equivalent to the graph in which we
showed there to be no Nash equilibria at all. Therefore any non-fractional Nash equilibria must buy
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Figure 3: A game with price of anarchy bf.

edgee. Given that edge must be bought, it is clear that player 2 will only contribute to edgEor a

Nash equilibriump to be non-fractional, this would mean that player 2 either buys edgky or buys

nothing at all. Suppose player 2 bugisThe only response for which player 1 would not want to deviate
would be to buya andc. But then player 2 has an incentive to switch to either duiged. Now suppose

player 2 does not bug. Then the only response for which player 1 would not want to deviate would be

to either buya andb or buyc andd. Either way, player 2 does not succeed in joining his source to his
sink, and thus has an incentive to buy an edge. Hence, there are no non-fractional Nash equilibria in this
graph.

The price of anarchy We have now shown that Nash equilibria do not have to exist. However, when
they exist, how bad can these Nash equilibria be? As mentioned above, the price of anarchy refers to the
ratio of the costs of the worst (most expensive) Nash equilibrium and the optimal centralized solution. In
the connection game, the price of anarchy is at igghe number of players. This is simply because if

the worst Nash equilibriunp costs more thai times OPT, the cost of the optimal solution, then there
must be a player whose paymentsprare strictly more than OPT, so he could deviate by purchasing
the entire optimal solution by himself, and connect his terminals with smaller payments than before.
More importantly, there are cases when the price of anarchy actually equatsthe above bound is

tight. This is demonstrated with the exampld-igure 3 Suppose there ai¢ players, ands consists of

nodess andt which are joined by 2 disjoint paths, one of length 1 and and one of IéigBach player

has a terminal as andt. Then, the worst Nash equilibrium has each player contributing 1 to the long
path, and has a cost df. The optimal solution here has a cost of only 1, so the price of anardity is
Therefore, the price of anarchy could be very high in the connection game. However, notice that in this
example thebestNash equilibrium (which is each player buyingN of the short path) has the same

cost as the optimal centralized solution. We have now shown that the price of anarchy can be very large
in the connection game, but the price of stability remains worth considering, since the above example
shows that it can differ from the (conventional) price of anarchy by as much as a fadtor of
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Figure 4: A single source game in which best response dynamics do not converge.

All the results in this section also hold® is directed or if each playehas a maximum cost méix
beyond which he would rather pay nothing and not connect his terminals.

3 Single source games

As we show inSection5, determining whether or not Nash equilibria exist in a general instance of the
connection game is NP-hard. Furthermore, even when equilibria exist, they may be significantly more
expensive than the centrally optimal network. In this section we define a class of games in which there
is always a Nash equilibrium, and the price of stability is 1. Furthermore, we show how we can use an
approximation to the centrally optimal network to constru¢l a ¢)-approximate Nash equilibrium in
poly-time, for anye > O.

Definition 3.1. A single source gamis a game in which all players share a common terrmspahd in
addition, each playdrhas exactly one other terminal

Before presenting our main result for this section, it is worth noting that even with single source
games, best response dynamics (the process in which players alternate making improving moves when
possible) does not necessarily converge to a pure Nash equilibrium at all. Three players all wish to
connect tes. Consider an initial configuration in which each player pays fully for the cost 4 direct path
from their terminal tcs (although any non-fractional configuration will lead to the same conclusion). If
player 1 is allowed to move, he will take the shortcut to the middle of player 3's path, paying 3 to do
so. Likewise, player 3 has an incentive to take a shortcut to the middle of player 2’s path. But doing so
leaves player 1 disconnected, and thus player 1 will revert to his direct connection. Since the resulting
configuration is simply a rotation of a previous configuration, it is not hard to see that this process will
never terminate.

We will now show that the price of stability is 1 in single source games. To do this, we must
argue that there is a Nash equilibrium that purchdsgshe minimum cost Steiner tree on the players’
terminal nodes. There are a number of standard cost-sharing methods for sharing the cost of atree among
the terminals. The two most commonly studied methods are the Shapley value and the Marginal Cost
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mechanisms[7]. The Marginal Cost (or VCG) mechanisms are very far from being budget balanced,
i.e. the agents do not pay for even a constant fraction of the tree built. The Shapley value mechanism
is budget balanced: the cost of each edge is evenly shared by the terminals that use the edge for their
connection (i. e., the terminals in the subtree below the @)lgélowever, this method does not lead

to a Nash equilibrium in our game: some players can have cheaper alternative paths, and hence benefit
by deviating. Jain and Vaziran2{]] give a truthful budget balanced cost-sharing mechanism to pay for

the minimum spanning tree, which is a 2-approximate budget balanced mechanism for the Steiner tree
problem. However, it is only a 2-approximation, and the cost-shares are not associated with edges that
the agents use. Here we will show that while the traditional Steiner tree cost-sharing methods do not
lead to a Nash equilibrium, such a solution can be obtained.

Theorem 3.2. In any single source game, there is a Nash equilibrium which purchases minimum
cost Steiner tree on all players’ terminal nodes.

Proof. GivenT*, we present an algorithm to construct payment stratqgi&$e will view T* as being

rooted ats. Let T, be the subtree of * disconnected frons whene is removed. We will determine
payments to edges by considering edges in reverse breadth first search order. We determine payments to
the subtred, before we consider edge In selecting the payment of agdrnb edgee we considerc,

the cost that playdrfaces if he deviates in the final solution: eddes the subtred, are considered to
costp;(f), edgesf not in T* costc(f), while all other edges cost 0. We never allot contribute so

much toe that his total payments exceed his cost of connedtitags.

Algorithm 3.3. Initialize pj(€) =0 for all players i and edges e.
Loop through all edges € in T* in reverse BFS order.
Loop through all players i with t € Te until e paid for.
If e is a cut in G set pi(e)=c(e).
Otherwise
Define C/(f)=pi(f) for all fe€T* and
d(f)=c(f) for all f&T*.
Define Y)j to be the cost of the cheapest path from S to
ti in G\{e} under modified costs C'.
Define Pi(T") =3 tcr: Pi(f).
Define p(e) =y pj(e).
set pi(e) = min{xi — pi(T*),c(e)— p(e)}
end
end
end

We first claim that if this algorithm terminates, the resulting payment forms a Nash equilibrium.
Consider the algorithm at some stage where we are determisipgyment toe. The cost function
¢ is defined to reflect the costs playidiaces if he deviates in the final solution. We never aliow
contribute so much tethat his total payments exceed his cost of connedtitms. Therefore it is never
in playeri’s interest to deviate. Since this is true for all playgr$s a Nash equilibrium.

We will now prove that this algorithm succeeds in paying Tor In particular, we need to show
that for any edge, the players with terminals ifie will be willing to pay fore. Assume the players
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Figure 5: Alternative paths in single source games.

are unwilling to buy an edge Then each player has some path which explains why it can’t contribute
more toe. We can use a carefully selected subset of these paths to nodifgrming a cheaper tree
that spans all terminals and doesn’t con®iif his would clearly contradict our assumption thédthad
minimum cost.

Define playeli’s alternative path Ato be the path of cost; found in Algorithm 3.3, as shown in
Figure 5 If there is more than one such path, chost be the path which includes as many ancestors
of tj in T as possible before including edges outsid& tf To show that all edges ih* are paid for, we
need the following technical lemma concerning the structure of alternative paths.

Lemma 3.4. Suppose As i's alternative path at some stage of the algorithm. Then there are two nodes
v and w on A such that all edges on;&om t to v are in T, all edges between v and w are in\B*,
and all edges between w and s are in\TTe.

Proof. OnceA reaches a node in T*\ Te, all subsequent nodes Af will be in T*\ T, as all edges
in T*\ Te have cost/(f) = 0 and the sourceis in T*\ Te. Thus, suppos#; begins with a path®; in
Te, followed by a path?, containing only edges not ifi*, before reaching a nodein Te, as shown in
Figure ga). Lety be the lowest common ancestonoéndyt; in Te. DefinePs to be the path fromy toy
in Te, and define?,; to be the path frony to x in Te. We will show that by replacing; U P, with P U Py,
playeri would obtain a better deviation tha.

First, we prove thaP; is strictly belowy. If this were not the case, thdf is a subpath oP;, and
soc/(Ps) < c/(Py). The modified cost oP; is always 0, as none of the edge$nare on playei’s path
fromtj to sin T*. SinceP; is disjoint fromT*, its modified cost is just the actual cost of the pBth
i.e.,c(P,) =c(P,). This cost is strictly positive (if there were any 0-cost edge in the graph, we could
have simply contracted them before beginning our payment process). Therefore, the cost tdagent
purchasd” UP; is strictly greater than the cost to purch&sel P4, and so4; cannot be a best deviation
path for agent. Because of this contradiction, we may now assumeRhe strictly belowy.

We now show that under the modified cost funct@rP; UP; is at least as cheap &UP,. Since
P, UP; includes a higher ancestorpthanA; (namelyy), this contradicts our choice &¢.
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Figure 6: Alternative path structure in the proofidfeorem 3.2

Consider the iterations of the algorithm during which plalyeould have contributed to edges in
P;. At each of these steps the algorithm computes a cheapest patly toa At any time, playei’s
payments are upper bounded by the modified cost of his alternate path, which is in turn upper bounded
by the modified cost of any path frotnto s. In particular, playei’s payments oifPs are upper bounded
by the modified cost of the path U P, followed by a path inf* from x to s. The latter path fronx
to s has modified cost of 0, since we have not asked play@icontribute to any edges aboyet this
point. Thereforei’s contribution toPs is always at most the modified cost®fUP.. This implies that
d(PBUPR) =d(Rs) < (PLUP,), as desired. O

Thus, players’ alternative paths may initially use some edgés iout subsequently will exclusively
use edges outside @¢. We use this fact in the following lemma.

Lemma 3.5. Algorithm 3.3fully pays for every edge in*T

Proof. Suppose that for some edggafter all players have contributed & p(e) < c(e). That is, the
total payments currently being made by player3dmo not cover the cost of connecting these players
to T*\ Te. We will demonstrate how to rewir& so as to connect all players i to T* \ Te without
increasing their payments, thus contradicting the minimality ‘of

For each playet, call the highest ancestor pfin A; that is also inle i's deviation pointdenoted;.

Let D be the set containing theghestdeviation points irle.

We modify T* by replacingTe as follows: those playeliswhose alternative path% are associated
with nodes irD deviate ta4;, as shown iriFigure &b). All other players leave their payments unchanged.
Note that no player has increased his expenditures. If we can show that all termifiadsérconnected
to T*\ Te after this modification, we're done.
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DefineT, to be the subtree rooted dt Consider any edgé in T;. By Lemma 3.4 playeri is the
only deviating player who could have been contributing tdf i did contribute tof, thenf must be on
the unique path fromy to d; in Tg, and hencd is in A;. ThusT; is fully paid for.

By Lemma 3.4 we know thatA; consists of edges if; followed by edges irfE \ T* followed by
edges inT*\ Te. The modified cost’ of edges irE \ T* is their actual cost. Thuspays fully for a path
connectingl; to T*\ Te. Thus all terminals iffe are connected t&* \ Te, as desired. O

Since we have also shown that the algorithm always produces a Nash equilibrium, this concludes the
proof of the theorem. O

We will now argue thatlgorithm 3.3works even if the graph is directed. It is still the case that
if the algorithm does succeed in assigning payments to all edges, then we are done. Hence, to prove
correctness, we will again need only show that failure to pay for an edge implies the existence of a
cheaper tree, thus yielding a contradiction. The problem idtiaima 3.4no longer holds; it is possible
that in a directed network, some of the players attempting to purchase ar kdgean alternative path
which repeatedly moves in and out of the subffgeThus, the argument is more complex, and requires
a slightly different definition foD.

Lemma 3.6. Algorithm 3.3fully pays for every edge in*Tfor directed graphs.

Proof. Suppose the algorithm fails to pay for some edgat this point, every playerrwith a terminal in
Te has an alternative path, as defined earlier. Defi2to be the set of vertices contained in bdtrand
at least one alternative path. Note tBatontains all terminals that appearin We now creat®’ C D
by selecting thénighestelements oD; we select the set of nodes frdbnthat do not have ancestors with
respect tale in D. Every terminal inTe has a unique ancestor @ with respect tdle, and every node in
D’ can be associated with at least one alternative path.

For any noder € D/, let A, be the alternative path containing If more than one such path exists,
simply select one of them. Defif§ to be the portion of this path fromto the first node i \ Te. Note
that A, does not re-enter the subtree rooted,aince if it did, we could find a shorter alternative path
by shortcutting the distance between whafentered and left that subtree.

We can now formT’ as the union of edges from\ Te, all pathsA{, and every subtree dt rooted
at a node irD’. T might not be a tree, but breaking any cycles yields a tree which is only cheaper.

It is clear that all terminals are connected to the rodft'insince every terminal ifl is connected to
some node i, which in turn is connected 6\ Te. Now we just need to prove that the cost of our new
tree is less than the cost of the original. To do so, we will show that the total cost of the subtrees below
nodes inD’, together with the cost of adding any additional edges needed by theAjathsio greater
than the total payments assigned by the algorithm to the playdestius far. Hence it will be helpful
if we continue to view the new tree as being paid for by the players. In particular, we will assume that
all players maintain their original payments for all edges below nodé&s,iand the additional cost of
building any path,, is covered by the player for which, was an alternative path. It now suffices to
show that no player increases their payment.

For the case of those players who are not associated with a nodd®frdhis trivially holds, since
their new payments are just a subset of their original payments. Now consider aipiddy@emust pay
for any unbought edges in the path which starts from node< D'. Note that player's terminal might
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Figure 7: Alternative path structure in the prooflafmma 3.6

not be contained within the subtree rootedratf it is, then we are done, since in this case, playger
new cost is at most the cost Af, which is exactlyi’s current payment.

Thus suppose instead that playsrterminal lies in a subtree rooted at a different netdg v e D’
(this case is shown ifigure 7). Defineu to be the least common ancestorvadndV in Te. Observe
thatu can not be eithev or V, as this would contradict the minimality of the €&t DefineP; to be the
current payments made by playiérom its terminal tou, and letP, be the current payments made by
playeri from u to e (inclusive). DefineP; as the cost oA, \ A, and letP, be the cost of\,. Note that
all costs are with respect thas defined in the algorithm, and as such, depend on both playgairrent
payments, and those of the other players. By the definition of alternative path,

PL+P,=P;+Py.

Furthermore, since we have already successfully paid for a connectipwoknow thats > Py, since
otherwise, when we were paying for the edges betweandu, playeri would have had an incentive
to deviate by purchasing and then using the path fromto u in Te, which would have been free for
HenceP; < Ps.

Therefore we can bound playeés contribution to edges belo®’ by P; (sinceu lies above/), and
we can bound playeils contribution toA, by P,. Taken together, we have that playsmew cost has not
increased. Thus ift’, no player has increased his payment, all terminalk iare connected td \ Te,
and these edges are fully paid for. Since those same terminals did not fully pay_f¢e} originally,
T’ must be cheaper than but this is a contradiction. O

We have shown that the price of stability in a single source game is 1. However, the algorithm for
finding an optimal Nash equilibrium requires us to have a minimum cost Steiner tree on hand. Since this
is often computationally infeasible, we present the following result.

Theorem 3.7. Suppose we have a single source game andvapproximate minimum cost Steiner
tree T. Then for ang > 0, there is a poly-time algorithm which returns(a+ €)-approximate Nash
equilibrium on a Steiner tree Twhere ¢T') < c(T).

THEORY OF COMPUTING, Volume 4 (2008), pp. 77-109 89


http://dx.doi.org/10.4086/toc

E. ANSHELEVICH, A. DASGUPTA, E. TARDOS, AND T. WEXLER

Proof. To find a(1+ ¢)-approximate Nash equilibrium, we start by defining: ec(T)/((1+ €)na).
We now useéAlgorithm 3.3to attempt to pay for all bug of each edge iff. SinceT is not optimal, it is
possible that even with thereduction in price, there will be some edg#hat the players are unwilling
to pay for. If this happens, the proof ®heorem 3.4ndicates how we can rearrangjeto decrease its
cost. If we modifyT in this manner, it is easy to show that we have decreased its cost by ay.|édst
this point we simply start over with the new tree and attempt to pay for that.

Each call toAlgorithm 3.3 can be made to run in polynomial time. Furthermore, since each call
which fails to pay for the tree decreases the cost of the trge g can have at mo$l + €)an/¢ calls.
Therefore in time polynomial in, & ane~1, we have formed a tre€’ with ¢(T’) < ¢(T) such that the
players are willing to buyl’ if the edges inT" have their costs decreasedpy

For each playerand for each edgein T’, we now create a new paymepi{e) by increasingp;(e)
in proportion to playei’s total payments ovef’ such thatis fully paid for. In particular,

pi(T')
S L0)

Notice that players will now be paying for edges which they might not even use. hde€ris clearly
paid for. To see that this is @ + €)-approximate Nash equilibrium, note that playelid not want to
deviate before his payments were increased. If wanldéte the number of edges T, theni’s payments
were increased by

pi(e) = pi(e) +

/! Ve AU Pi (T/) _ SC(T)pi (T,)m 8C(T)pi (T/) T
AT =P =Y —my™ = At ena(e(™) —my) ~ aite)d—e)eT) = P

Thus any deviation yields at most ariactor improvement. O

Extensions Both Theorem 3.2and Theorem 3.7can be proven for the case where our gr&pls
directed, and players wish to purchase paths fdos, although unfortauntely, the best-known approx-
imation algorithms for the directed problem is quite weak. Once we have shown that our theorems apply
in the directed case, we can extend our model and give each playmaximum cost mgx) beyond

which he would rather pay nothing and not connect his terminals. It suffices to make a new términal
for each playet, with a directed edge of cost 0 toand a directed edge of cost nja)xto s.

4 General connection games

In this section we deal with the general case of players that can have different numbers of terminals and
do not necessarily share the same source terminal. As stated before, in this case the price of anarchy can
be as large ahbl, the number of players. However, even the price of stability may be quite large in this
general case.

Consider the graph illustrated iigure 8§ where each playerowns terminals andt;. The optimal
centralized solution has costH3e. If the path of length 1 were bought, each plaiyer2 will not want
to pay for anye edges, and therefore the situation of players 1 and 2 reduces to the exa@ptdion2
of a game with no Nash equilibria. Therefore, any Nash equilibrium must involve the purchase of the
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N2-1e s,

Figure 8: A game with high price of stability.

path of lengthN — 2. In fact, if each player > 2 buys J/(N —2) of this path, then we have a Nash

equilibrium. Therefore, for ani > 2, there exists a game with the price of stability being neldrly?2.
Because the price of stability can be as large9éhl), and sometimes pure Nash equilibria may

not exist at all, we cannot hope to be able to provide cheap Nash equilibria for the multi-source case.

Therefore, we consider how cheapapproximate Nash equilibria with smatl can be, and obtain the

following result, which tells us that there always exists a 3-approximate Nash equilibrium as cheap as

the optimal centralized solution.

Theorem 4.1. For any optimal centralized solution*T there exists a 3-approximate Nash equilibrium
such that the purchased edges are exactly T

We prove this theorem iBection4.3 using the sufficient conditions for an approximate Nash equi-
librium of Theorem 4.2 In Section4.2 we address the key special case where the underlying graph is
a path, which is then extended to the general case via a simple inductiSection4.4 we give lower
bounds and a polynomial time algorithm for finding an approximate Nash equilibrium.

4.1 Connection sets and sufficient conditions for approximate Nash equilibria

Given a set of bought edgés denote by &table payment;dor playeri a payment such that playehnas

no better deviation thap,, assuming that the rest dfis bought by the other players. A Nash equilibrium
must consist of stable payments for all players. However, what if in some solution, a player's payment
pi is not stable, but is a union of a small number of stable payments? This implies that each player's best
deviation is not much less than its current payment. Specifically, we have the following general theorem.

Theorem 4.2. Suppose we are given a payment scheme(p;,..., px), with the set of bought edges

T. Further, suppose that for all i,;can be decomposed in sub-payments p.. ., p* (together
summing to P such that each of sub-payment is a stable payment for i with respectto T. Then pis an
a-approximate Nash equilibrium.

Proof. Let p/ be the best deviation of playegiven p, and letp’, ..., p* be the stable payments which
together sum tq. The fact that! is a valid deviation foi means that the set of bought edgewith
pi taken out andy added still connects the terminalsiofp! being a stable payment means thait if
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only pays forp! and the rest of is bought by other players, then the best deviationisfat least as
expensive ap!. In this casep is still a possible deviation, since if taking optand addingy connects
the terminals of, then so does taking opt and addingp{. Therefore, we know that the cost pffis no
smaller than the cost of any, anda - cost(p}) > cost(p;), wherecost p;) denotes the total cost foof
playing strategyp;. O

Notice that the converse of this theorem is not true. Consider an example where dayamttribut-
ing to an edge which it does not use to connect its terminals. If this edge is cheap, this would still form
an approximate Nash equilibrium. However, this edge would not be contained in any stable payment of
playeri, sop; would not be a union of stable payments.

To proveTheorem 4.1we will construct a payment scheme on the optimal centralized solution such
that each player’s payment is a union of 3 stable payments. The stable payments we use for this purpose
involve each edge being paid for by a single player, and have special structure. We call these payments
connection setsSince there is no sharing of edge costs by multiple players in connection sets, we will
often use sets of edges and sets of payments interchang@&atidglow denotes an optimal centralized
solution, which we know is a forest.

Definition 4.3. A connection se§ of playeri is a subset of edges af* such that for each connected
componen€ of the graphl *\ S, we have that either

(1) any player that has terminals@has all of its terminals i€, or
(2) playeri has a terminal irC.

Intuitively, a connection s&is a set such that if we removed it froii and then somehow connected
all the terminals of, then all the terminals of all players are still connected in the resulting graph. We
now have the following lemma, the proof of which follows directly from the definition of a connection
set.

Lemma 4.4. A connection set S of player i is a stable payment of i with respect.to T

Proof. Suppose that playeéionly pays exactly for the edges §fand the other players buy the edges in
T*\S LetQ be a best deviation ofin this case. In other words, 1€} be a cheapest set of edges such
that the sefT*\S) UQ connects all the terminals af To prove thaSis a stable payment for we need
to show thatost(S) < cost(Q).

Consider two arbitrary terminals of some player. If these terminals are in different components of
T*\S then by definition of connection set, each of these components must have a termirgherfe-
fore, all terminals of all players are connected Ti\S) U Q, since(T*\S) UQ connects all terminals of
i. SinceT* is optimal, we know thatost T*) < cost(T*\S)UQ). SinceSC T* andQ is disjoint from
T*\S thencost((T*\S)UQ) = cost(T*) — cost(S) + cost Q), and sacost(S) < cost(Q). O

As a first example of a connection set consider the eBgekT* that are used exclusively by player
i. More formally, letT' be the unique smallest subtreeTof containing all terminals of playerand let
S be the set of edges belonging onlyftband no other tre@!.

Lemma 4.5. The set Sdefined above is a connection set for player i.
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Q(uy)
Quq)  Q(upy)  Qug)

Vi o o T ro) T ro) T rg) T O oVn

Figure 9: The path®(u) for a single player. (a)i has no terminal itJ,, (b) i has a terminal itJ,, (c) i
is the special player diemma 4.1%hat has terminals both vy andvy,.

Proof. Suppose to the contrary that there are at least two components 8fthat contain terminalig
andt, of some player #i. SinceT* is a tree that connects all terminals, this means that the path in
T* betweert; andt, must also be contained iRl But this implies that the edges 8fwhose removal
disconnected this path also belongdrth which contradicts the definition &. O

Each playei will pay for this connection set, the set of edges used only by playée want each
player to pay for at most 2 additional connection sets. Without loss of generality we can contract the
edges now paid for, forming a new trdé which the players must pay for. For the remainder of this
section we will assume that each edge belongs to at least two diffErenaind will have players pay
for at most two connection sets.

4.2 Approximate Nash equilibrium in paths

In this subsection we consider the key special case when thé trisea pathP. In the next section we
use induction to extend the proof to the general case.

We will usevy, k=1,...,nto denote the nodes on the p&lin the orderv,...,v,, and will refer
to the terminals in this order, for example, the “first” terminal of playeill mean the one closest tq.
Denote the set of all terminals locatedvaby Uy, and assume that each edge is in at least two different
T"’s as mentioned above.

Roughly speaking, the idea is that for each playare associate an edge of the path with each
terminal that belongs to playérand have playeirpay for these edges. For a terminalve define the
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1 3 3 6 6 1
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Figure 10: The bold edges along the path form a single connection set conngatimgighboring
terminals of players 1 and 2.

set of edgef)(u) as the possible edges that can be associatedwFor every terminal € Uy owned
by a playeri, with k # n, define a subpat®(u) as follows (illustrated oirigure 9a)). If i owns another
terminal inU, with ¢ > k, then seQ(u) to be the subpath d? from v to the first such node,. If there
is no such node (becausas i’s last terminal inP), setQ(u) to be the subpath d? starting at the first
terminal ofi, and ending a¥y. Notice thatQ(u) is not defined folu € Uy, so ifi has a terminal itJ,,
the Q(u) paths for terminals afwill look like Figure 9b).

A key observation about th@ sets is that if a playdrpays for one edge in ea€(u) (excluding the
one belonging to the last terminal) the resulting set forms a connection set.

Lemma 4.6. Consider a payment By player i that contains at most one edge from each pdtn) Q
where u are terminals of i excluding the last terminal of i. Theérfp8ns a connection set.

Proof. Every component oP\S contains a terminal of; since there is a terminal dfbetween every
two Q(u)’s for u belonging tai, as well as before the first su€¥(u), and after the last one. This means
thatS is a single connection set. O

Unfortunately, we cannot assign each edge to a different terminal, as shown by the example of
Figure 10 The bold edges in this example are used only by players 1 and 2, and belongpaiies
of the first terminals of players 1 and 2. This leaves us with three edges and only two terminals to assign
them to. However, note that the set of bold edges is a single connection set by itself, even though it
contains more than one edge in ev€yath. We say that a sktof edges along the path is coupliéd
all the edge® € L belong to the exact same s€gu) for u € UUx. We need to extend our ideas so far
to allow us to assign such coupled sets of edges to a terminal, rather than just assigning a single edge.

Definition 4.7. A max-coupled-set is a maximal set of edges Bfsuch that for every edgec L, the
set of path€)(u) that contaire is exactly the same, far € [JUy.

The key property of max-coupled-sets is they form a connection set between two consecutive termi-
nals of one player.

Lemma 4.8. Consider a max-coupled-set L, and order all components C\bfdfong the path. For all
components C except the two end components, any player that has terminals in C has all of its terminals
inC.

Proof. Consider a componefitof P\L that is neither the first nor the last component, such that a player
j has a terminal in C. Consider the edges bfdirectly adjacent t&. If the earlier such edge belongs
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to some patlQ(u) with u a terminal ofj, then this gives us a contradiction, since the p&s) for
terminals ofj change at, and never become the same. This contradicts the fack tised coupled set,
since both edges daf must be in exactly the sant@ paths. On the other hand, if the earlier edgé. of
adjacent t&C does not belong to any pa@(u) with u a terminal ofj, then for the edges d&f on the other
side ofC to belong to the sam@ paths, it must be that all terminals pare insideC, as desired. [

This implies the following extension dfemma 4.6

Lemma 4.9. Consider a payment' ®y player i that contains at most one max-coupled-set from each
path Qu), where u are terminals of i excluding the last terminal of i along the path. THefori@s a
connection set.

Proof. We must prove that every componentdfS obeys one of the two properties from the definition

of a connection set. Consider a componenPo§ that does not contain a terminal iof By the argu-

ment inLemma 4.6 this component must be bordered by edges of the same max-coupled-set, and by
Lemma 4.8this component satisfies the first property in the definition of a connection set. O

Now we are ready to prove our main result for paths. To help with the induction proof appearing in
Subsectiord.3for the case of trees, we need to prove a somewhat stronger statement for paths.

Theorem 4.10. Assume the optimal tree*Tis a path P, and each edge of P is used by at least two
players. There exists a payment scheme fully paying for path P such that each player i pays for at most
2 connection sets. Moreover, players with terminals jrpdy for at most 1 connection set.

Proof. In our payment, we will assign max-coupled-sets of edges to terminaly Lemma 4.9the

edgesS assigned to the terminals of playieexcluding the last terminal 6f form a single connection

set. For players that do not have a terminalinthe max-coupled-set assigned to the last terminal
forms a second connection set. Since a max-coupled-set is a connection set by itself, this would meet
the conditions of the Theorem.

To form this payment, we form a bipartite matching problem as followsYlUgdve a node for each
max-coupled-set of edges B and letZ be the nodes ofy,...,v,_1 of P. Form an edge between a
nodevi € Z and nodd- €Y if there exists some terminale Uy such that. C Q(u). This edge signifies
that some player owning € Uy could pay forL. In addition, ifu € Uy is the last terminal of a player
i, butk # n, then we also form an edge betwegne Z andL € Y if L C T'. These edges signify the
“additional” max-coupled-set that this player might pay for since it owns no terminélg.in

We claim that this graph has a matching that matches all nodésaind we will use such a matching
to assign the max-coupled-sets to terminals according to the edges in this matching. To prove that such
a matching exists, we use Hall's Matching Theorem. Xat Y, defined (X) to be the set of nodes i
which X has edges to. According to Hall's Matching Theorem, there exists a matching in this bipartite
graph with all nodes of incident to an edge of the matching if for each Xef Y, |d(X)| > |X]|. To
prove that this condition is satisfied, arrange the edif&9 in the max-coupled-se$ in the order they
appear irP. We want to show that between every two max-coupled-sexs tifere is a node belonging
to d(X). This will yield |X| — 1 nodes ird (X). Then we show that there is an additional nod@ (i)
before all the edgels(X).
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Consider some edgeof E(X) that belongs to a max-coupled-$etand suppose a previous edge
in E(X) belongs to a different a max-coupled-kétSince these are different and maximal coupled sets,
there must be some paf(u) that contains exactly one ef€’. The player corresponding to this path
Q(u) must have a terminal betweerandé€ that is in the sed (X).

We need to prove that there is an additional nodé (K) before the seE(X). LetL be the first
max-coupled-set oK that appears if?. The player corresponding to a pafiu) containingL must
have a terminal i (X) beforeL.

Therefore,|X| < [d(X)]| for all X C 'Y, and hence there always exists a matching that covers the
max-connection-sets. O

This finishes our proof that it * is a path, then there exists a 3-approximate Nash equilibrium that
purchases exactly* (2-approximate when all edges i are used by at least two players). To prove
the general case, however, we need the following strengthening.

Lemma 4.11. Suppose there exists a player i with a terminal ¥, and a terminal in . Then there
exists a payment scheme asTineorem 4.1@nd moreover i has at least 2 terminals in the component
of P\S containing V.

Proof. We change the definition @(u) for the terminals of, as shown irFigure 9c). We letQ(u) be
the path immediately to the left of until it reaches the next terminal bf

We show that the proof ofheorem 4.1@oes through in this case with minor changes. First note
that the max-coupled-sets are exactly the same sets as before. Note that the max-coupled-sets assigned
to playeri now will form a single connection set, and further the last terminabeaforeU, would be in
the component dP\S containingvy, as we desired.

We must now verify that the bipartite graph formed in the proofTbEorem 4.10actually has a
matching that covers all of the max-coupled sets. To do this, we need to proy&thatd (X)| for a
setX C 'Y, which we do once again by showing that between every pair of max-coupled-3ethéne
exists a node od (X), and there is a further node 8fX) in front of the seE(X).

As before, if we have two edgesand€ that belong to two different max-coupled-sets, then any
player j that has a se@(u) containing exactly one of and€ must have a terminal ia(X) between
eand€. To see that we have a nodediiX) beforeE(X) let L be the first max-coupled-set ¥f that
appears irP, the letj be the player corresponding to a p&lu) containingL. If j #i thenj has a
terminal ind(X) beforeL. Recall that each edge is used by at least two players so we can s@l@ot a
set containind. that belongs to a playgr# i.

We can now continue with the process given in the proofrbéorem 4.1Go form the desired
payment scheme. O

We will need the following further observation about the proof: in the proof at most one terminal is
assigned any set of edges among the terminals in eath det any node of the path.

Lemma 4.12. There exists a set
A= {Ul, uz,..., Unfl}

with u € Uy such that only the terminals;u.. u,_; are assigned max-coupled-sets in the payment
formed in the proof okemma 4.11
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4.3 Proof of Theorem 4.1(Existence of 3-approx Nash equilibrium)

In this subsection, we prove that for any optimal centralized solufigrthere exists a 3-approximate
Nash equilibrium such that the purchased edges are exgttliyor simplicity of the proof, we assume
thatT* is a tree, since otherwise we can apply this proof to each componerit of

Recall that we used' to denote the unique smallest subtred dfwhich connects all terminals of
playeri. We formed the first connection set usingmma 4.5by the edges that belong to a single
Contracting these edges, we can assume that all edges are used by at least two players, and we will
construct a payment scheme in which each player is paying for at most 2 connection sets.

Intuition and proof outline  The idea of the proof is to select two terminals of a playést P be the
path connecting them ifi*, and lett; = vy, ..., v, =t, denote the nodes along the p&hWe apply the
special case for pathsemma 4.11to the patHP with all playersj with setsT! NP nonempty. Then we
apply the induction hypothesis for each subtree rooted at the npadpathP, where we use the one
playerj (by Lemma 4.12 that has a max-coupled-set assigned to npdes a “special” player, whose
two terminals we select to form a path as above.

To make the induction go through we need a stronger versiothebrem 4.lanalogous to the
stronger version of the path lemmiaefnma 4.1).

Theorem 4.13. Assume each edge of the optimal treei3 used by at least two players, lett be a
terminal, and i a player with terminal t. Then there exists a way to pay fdoyrassigning at most two
connection sets to each player, so that the following hold:

(1) each player j that hast as a terminal has at most one connection set assigned,

(2) for the connection set @ssigned to player i the set'TS has an additional terminal of i in the
component containing terminal t.

Proof. Let s be another terminal of player and letP be the path connectingandt in T*. Lets=
vi,...,Vh =t be the sequence of nodes aldhgand letT,” be the subtree of “\ P rooted at nodey.

Now we define a problem on paky and subproblems for each of the subtrgg¢s First we define
the problem for pati. A player j will have a terminal at node if player j has a terminal in the subtree
T With this definition, each edge &fis used by at least two players. We appgmma 4.11with i as
the special player (by choice of the pathas bothv, andv; as terminals in the induced problem on the
path). We assign each player connection sets.

Next we will define the problems on the tregs. For this subproblem we say thatis a terminal
for any player that has a terminal outside of the subfjeeWe use the induction hypothesis to assign
connection sets to playersTyf. Recall that by emma 4.12at most one player, say playigris assigned
a max-coupled-set to a terminalin on the path problem. We usg as the termina in the recursive
call, andik as the special player.

To finish the proof we need to argue that the assignment satisfies the desired properties of our theo-
rem. We will need to have a few cases to consider.

Consider a playej that hasT ! NP = 0. This playerj has all its terminals in a subtrd@g, and hence
by the induction hypothesis, it has at most two connection sets assigned in Sijbtree
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Figure 11: Sets assigned to a player that do not form one connection set. The nodes in dark are terminals
for one playerj, and dark edges are assigned to this player with the grey edge assigned to the last
terminal of j along the path. (a): the case wheg T/, and a set (the grey edge) is assigned to the last
terminal of j alongP. (b): the case when no connection set is assigned to the last termipalafgP.

Now consider a playej that hag as a terminal, buj # i. For each subtree that has terminals of
player j the recursive call has assigned at most one connection set to [jplesred we may have also
assigned a connection set at p&h Note that in the patl the playerj owns terminal, so its last
terminal ist, and has no séd(t). We claim that combining all the sejsis paying for into one se®/
forms a single connection set. To see why consider the connected compon&hisSof Connected
components contained in a subtrgg satisfy one of the connection set properties by the induction
hypothesis. If a terminal at a nodey of the path problem was assigned a max-coupled-set along the
pathP then in the recursive call we guaranteed that plgyleas a terminal connected to the regtso
the component containing has a terminal if '\ S. Finally, the last component along the path contains
the terminat.

A similar argument applies for the special playethe union of all connection sets assigned to
for the path and for the recursive calls combines to a single connectid® geit satisfies the extra
requirement that s&t*\ S has an additional terminal in the component containing terntinal

Finally, consider a playarwheret is not a terminal of (though it may be included ifi!). As before
for each subtree that has terminals of play#re recursive call has assigned at most one connection set
to player j, and we may have also assigned a connection set atRpathhis case differs from the
previous ones in two points. First, tif¢ T! then the last node; of T along the path may have an
extra connection set assigned to it; second, the madenot a terminal for playej. As a result of
these differences, combining all the sets assigned to pla@a single se§ may not form a single
connection set. Consider the connected componefits\&. Connected components fully contained in
a subtredl” satisfy one of the connection set properties by the induction hypothesis. Most components
that intersect the patR must also have a terminal of playgr if a terminalu in the path problem at
a nodevi was assigned a connection set along the patiien in the recursive call we guaranteed that
playerj has a terminal connected to the regthence the component containing nagdas a terminal
in TI\S.
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Figure 12: A graph where players must pay for at least 3 connection sets.

However, there can be componentsTaf S intersecting the patR that do not satisfy either of the
connection set properties. f; is the last node along the pafin T, then ifvi; has a max-coupled-set
assigned to player (e.g., |ka # t) then the component(s) @f/\S adjacent to this max-coupled-set
may not satisfy either of the connection set properties. Otherwise, the last component along the path
P may not satisfy these properties. Ségure 11for examples for each possibility. Iigure 11a),
the grey edge is the max-coupled-set assigned towvhich results in the highlighted component not
having any terminals of. In Figure 11b), nothing is assigned g, and this also results in the high-
lighted component not having any terminalsjofNotice, however, that all other components obey the
connection set properties since they each have a terminal lof either case (whetheg, has a max-
coupled-set assigned to it or not), removing one of the max-coupled-sétse one aSS|gned tq,, or
one bordering the final component aloRgvith no terminals) results in a connection St= S'\L,,
and the max-coupled-skf alone forms a second connection set. O

4.4 Extensions and lower bounds

We have now shown that in any game, we can find a 3-approximate Nash equilibrium purchasing the
optimal network. We proved this by constructing a payment scheme so that each player pays for at most
3 connection sets. This is in fact a tight bound. In the example showigime 12 there must be players

that pay for at least 3 connection sets. ThereNaayers, with only two terminalss(andt;) for each

playeri. Each player must pay for edges not used by anyone else, which is a single connection set. There
are N — 3 other edges, and if a playigpays for any 2 of them, they are 2 separate connection sets, since
the component between these 2 edges would be uncoupled and would not contain any terniinals of
Therefore, there must be at least one player that is paying for 3 connection sets.

This example does not address the question of whether we can lower the approximation factor of our
Nash equilibrium to something other than 3 by using a method other than connection sets. As a lower
bound, inSection5 we give a simple sequence of games such that in the limit, any Nash equilibrium
purchasing the optimal network must be at |§832)-approximate.

Polynomial-time algorithm  Since the proof ofTheorem 4.1is constructive, it actually contains a
polynomial-time algorithm for generating a 3-approximate Nash equilibriurii oanWe can use the
ideas fromTheorem 3.7o create an algorithm which, given anapproximate Steiner forest, finds a
(3+ ¢)-approximate Nash equilibrium which pays for a Steiner foféstith c(T’) < c(T), as follows.
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However, this algorithm requires a polynomial-time optimal Steiner tree finder as a subroutine. We can
forego this requirement at the expense of a higher approximation factor.

We start by definingy = ec(T)/((1+ ¢)ne), for € small enough so thatis smaller than the min-
imum edge cost. The algorithm dheorem 4.1generates at most 3 connection sets for each player
even if the forest of bought edges is not optimal. We use this algorithm to pay for alidhach edge
in T. We can check if each connection set is actually cheaper than the cheapest deviation df player
which is found by the cheapest Steiner tree algorithm. If it is not, we can replace this connection set with
the cheapest deviation tree and run this algorithm over again. The fact that we are replacing a connection
set means that all the terminals are still connected in the new tree. If we nlodifthis manner, it is
easy to see that we have decreased its cost by atjeast

We can now use the arguments fr@heorem 3.7o prove that this algorithm producega+ ¢)-
approximate Nash equilibrium, and runs in time polynomiah;irx, ande~1. It requires a poly-time
Steiner tree subroutine, however. If each player only has two terminals, finding the cheapest Steiner tree
is the same as finding the cheapest path, so this is possible, and we can indeed find (8 ¢heap
approximate Nash equilibrium in polynomial time.

For the case where players may have more than two terminals, we can easily modify the above
algorithm to use polynomial time approximations for the optimal Steiner tree, at the expense of a higher
approximation factor. If we use a 2-approximate Steiner fofesand an optimal Steiner tree5b-
approximation algorithm from27] as our subroutine, then the above algorithm actually givesab+
¢)-approximate Nash equilibrium 6 with ¢(T’) < 2-OPT, in time polynomial im ande .

5 Lower bounds and NP-hardness

Lower bounds for approximate Nash on the optimal network

Claim 5.1. For any € > 0, there is a game such that any equilibrium which purchases the optimal
network is at least ag — g)-approximate Nash equilibrium.

Proof. Construct the grapldy on 2N vertices as follows. Begin with a cycle oriN2vertices, and
number the vertices 1 througNZn a clockwise fashion. For vertéxadd an edge to verticés-N — 1
(mod 2N) andi+N+1 (mod N). Let all edges have cost 1. Finally, we will aditiplayers with 2
terminals s andt;, for each player. At nodej, add the labed; if ] <N andt;_n otherwise Figure 13a)
shows such a game witkh = 5.

Consider the optimal network* consisting of all edges in the outer cycle excémtty). We
would like to show that any Nash which purchases this solution must be af@ast21)/(4N —11)-
approximate. This clearly would prove our claim.

First we show that players 1 aridl are not willing to contribute too much to any solution that is
better than(3/2)-approximate. Suppose we have such a solution. D&fioée player 1's contribution
to his connecting path it *, and definey to be his contribution to the remainder ®f. Thus player
1 has a total payment of+y. Player 1 can deviate to only pay far Furthermore, player 1 could
deviate to purchase onlyand the edgés;,ty). If we have a solution that is at ma&/2)-approximate,
then we have that/(x+y) > 2/3 and similarlyy+1/(x+y) > 2/3. Taken together this implies that
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(b)

Figure 13: A game with best Nash equilibrium on OPT tending to at Ieésipaproximation.

1/(x+y)>1/3, orx+y < 3. Asymmetric argument shows that plajeis also unwilling to contribute
more than 3.

Thus we have that the remainit— 2 players must together contribute at least-27. Therefore
there must be some player other than Nowho contributes at leag2N — 7) /(N — 2). Suppose player
i is such a player. Letbe the amount that playecontributes to his connecting pathri. Lety be his
contribution to(s_1,S) and letz be his contribution tdt;,ti;1). SeeFigure 13b).

Now consider three possible deviations available to playete could choose to contribute onty
He could contributey and purchase edgs;_1,t;) for an additional cost of 1. Or he could contribute
z and purchase edds,ti;1), also for an additional cost of 1. We will only consider these possible
deviations, although of course there are others. Note thav#s contributing to any other portion of
T*, then we could remove those contributions and increase andz, thereby strictly decreasinds
incentive to deviate. Thus we can safely assume that thess ardy payments, and hence

2N—7
N—2"
Sincei is currently paying at least+ y+ z, we know that his incentive to deviate is at least

X+y+z>

max(x+y+27 x+y+z’ x+y+z> ‘
X y+1 z+1
This function is minimized wher=y+ 1 = z+ 1. Solving forx we find that
AN — 11
X> .
~— 3N-6
Thus playeli’s incentive to deviate is at least
x+y+zZ 3x—2 :3_2 >3.2 3N—-6 _ 6N—21.
X X X AN—-11 4N-11
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Figure 14: Gadgets for the NP-completeness reduction.

Therefore adN grows, this lower bound on playés incentive to deviate tends towards23 Note that
in this proof, we only considered one optimal network, namély If we modify G by increasing the
costs of all edges not im* by some smalk > 0, thenT* is the only optimal network. Repeating the
above analysis under these new costs still yields a lower boun@dbB the best approximate Nash on
T* in the limit asN grows ande tends to 0. O]

NP-completeness

In this section, we present a brief proof that determining the existence of Nash equilibria in a given
graph is NP-complete if the number of playerO@) (wheren is the number of nodes in the graph).
We present a reduction from 3-SAT to show that the problem is NP-hard. The graph constructed will
have unit cost edges.

Consider an arbitrary instance of 3-SAT with clau€gsnd variables;. We will have a player for
each variableq, and two players for each clau€g. For each variablg; construct the gadget shown
in Figure 14. The source and sink of the playerare the vertices, andt; respectively. When player
X buys the left path or right path, this corresponds;tbeing set to be true or false, respectively. For
clarity, we will refer to this player as being tlif variable player.

Next, we construct a gadget for each cla@e The construction is best explained through an
example claus€; = (x1 VX2 V X3) whose gadget is given iRigure 14€. The two players fo€C; have
their source sink pairs &s;1,tj1) and(sj2,tj2) respectively. We will call both players on this gadget
clause players. The final graph is constructed by gluing these gadgets together at the appropriate labeled
edges. Specifically, the edges in clause ga@gdabelede;r, eor, andesr are the same edges that
appear in the corresponding variable gadgets. In other words, among all clauses and variable gadgets,
there is only one edge labeleg and only one labeledr, and all the interior nodes in the gadget for
each claus€; are nodes in variable gadgets.

Suppose that there is a satisfying assignmdantour 3-SAT instance. Consider the strategy in which
variable player fully buys the left path ifx; is true inA and fully buys the right path otherwise. Since
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this is a satisfying assignment, by our construction each clause gadget has at least one interior edge fully
paid for by a variable player. For each cla@g let e be one such edge, and let both players on this
gadget buy the unigue path of length 3 that connects their terminals which uses dtdgeeasy to see

that the clause players are satisfied as the cost of this path to each clause player is 2, the minimum that
he has to pay on any path from source to sink under the current payment scheme. The cheapest deviation
for each variable player also costs 2, and therefore they do not have any incentive to move either. Thus,
this forms a Nash equilibrium.

Suppose now that there is a Nash equilibrium. We will argue that this Nash equilibrium has to have
a specific set of edges paid for. First, note that the contribution of each player is not more than 2, as the
length of the shortest path is exactly 2.

Now suppose some perimeter edge of claGgés being bought. We know from the example in
Figure 1that perimeter edges cannot be bought by the clause play&;salone, for that would not
constitute a Nash strategy. Therefore there must be some other player, variable or clause, contributing
to the perimeter edge @;. Also, since this is a Nash strategy, any perimeter edge on which there is
a positive contribution by any player must be fully bought. And once any perimeter edgehafs a
positive contribution from a no@; player the payments of both the clause playeiS;ofill be strictly
less than 2 in a Nash strategy.

Suppose one of the claus€l, has some perimeter edge bought. Since at Nash equilibrium, the set
of edges bought must form a Steiner forest, we look at the component of the Steiner forest that has the
clauseC;. We will show that the number of edges in this component is more than twice the number of
players involved. Then, there must be a player who is paying more than 2, and hence this cannot be a
Nash equilibrium.

Suppose there areclause players anglvariable players in the component of the forest containing
C;. We know from the example iRigure 1thatx+y > 2. Then, the total number of nodes in the Nash
component containin@; is at least 4 3y as we have to count the two source-sink nodes for each
clause player and the three nodes on the path of each variable player. Since this is a connected tree, the
total number of edges in this componentist23y — 1. The average payment per player is then given by

2x+3y—1 _2+y—1
X+y X+y’

Now if y > 1, then the average payment per player is more than 2. Thus there must be some player who
is paying more than 2, which is infeasible in a Nashy # 1, then the average payment per player is
exactly 2. But again, since we know that the clause playe(S; gfay strictly less than 2 each, there
must be some player who pays strictly more than 2, which is again impossible. Lastly, we cannot have
y = 0 as then whenever a clause player participates in paying for another clause, he must use a node in
the path of a variable player, and thereby include this variable player in the compoignt of

This implies that variable players only select paths within their gadget. Furthermore, it implies that
variable players must pay fully for their entire path. Suppdsea variable player who has selected the
left (true) path, but has not paid fully for the second edge in that path. The remainder of this cost must be
paid for by some clause player or players. But for such a clause player to use this edge, he must also buy
two other edges, which are not used by any other player. Hence such a clause player must pay strictly
more than 2. But there is always a path he could use to connect of cost exactly 2, so this can not happen
in a Nash equilibrium. Thus we have established that variable players pay fully for their own paths.
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Now consider any clause gadget. Since we have a Nash equilibrium, we know that only internal
edges are used. But since each clause player can connect his terminals using perimeter edges for a cost
of exactly 2, one of the interior variable edges must be bought by a variable player in each clause gadget.

If we consider a truth assignmeftin which x; is true if and only if player selects the left (true) path,
then this obviously satisfies our 3-SAT instance, as every clause has at least one variable forcing it to
evaluate to true.

Therefore, this game has a Nash equilibrium if and only if the corresponding formula is satisfiable,
and since this problem is clearly in NP, determining whether a Nash equilibrium exists is NP-complete.

] | Single-Source | Multi-Source \
Result 4 Nash equilibrium | 3 3-approx Nash equilibrium
with cost equal to OPT|  with cost equal to OPT
Can handle directed Yes No
Players can have
more than 2 terminals No Yes
Players can have
maximum amount they
are willing to pay, magi) Yes No
Polynomial time alg Finds(1+ €)-approx Finds(4.65+ €)-approx
Nash equilibrium that Nash equilibrium that
costs at most.55- OPT costs at most 20PT

Table 1: Extensions for our main results in the Connection Game (OPT is the cost of the centralized
optimum).

| | Single-Source Multi-Source |
Exists Nash (1,1) 3,1)

Can find Nash in poly-time, (1+¢,1.55) | (4.65+¢,2)

Lower Bounds on Existencg (1,1) (1.5,1)

U

Table 2: Bicriteria approximations, written &8, ), meaning there exists (or it is possible to find) a
B-approximate Nash equilibrium that is only a factowofore expensive than the centralized optimum.

6 Conclusion and summary of results

A summary of the major results in this paper can be found in Tabkesd2. The first table summa-

rizes our results for the single-source and the general case, and the extensions for which these results
hold. Table2 summarizes our results in terms of bicriteria approximations, where the goal is to find an
approximate Nash equilibrium that is approximately optimal in cost. Notice that while in the general
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multi-source case we have shown the existence of a 3-approximate equilibrium on any optimal network,
and a lower bound of 1.5 for this approximation, most of the bicriteria-approximation space remains
unexplored. For example, it is still possible that there existt-a e)-approximate Nash equilibrium

that costg1+ ¢€) times the optimal centralized solution. Moreover, it is also possible that there exists a
(1+¢)-approximate Nash equilibrium that cost<IPT andcan be found in polynomial tim&uch a re-

sult would be extremely interesting, since when consideffhar)-approximate solutions as fable2,

it is often much more important to ensure tifiais small instead oé.
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