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The results above appear as theorems in our paper “A randomness-efficient sampler for
matrix-valued functions and applications” [FOCS 2005, ECCC 2005], as consequences of
the main claim of that paper: a randomness efficient sampler for matrix-valued functions
via expander walks. However, we discovered an error in the proof of that main theorem
(which we briefly describe in the appendix). That claim stating that the expander walk
sampler is good for matrix-valued functions thus remains open. One purpose of the current
paper is to show that the applications in that paper hold despite our inability to prove the
expander walk sampler theorem for matrix-valued functions.

1 Introduction

Chernoff bounds are extremely useful throughout theoretical computer science. Intuitively, they say that
a random sample approximates the average, with a probability of deviation that goes down exponentially
with the number of samples. Typically we are concerned with real-valued random variables, but recently
several applications have called for large-deviation bounds for matrix-valued random variables. Such a
bound was given by Ahlswede and Winter [1] (seeTheorem 2.6andTheorem 2.8for a precise statement
of their bounds).

In particular, the matrix-valued bound seems useful in giving new proofs of probabilistic construc-
tions of expander graphs [3] and also in the randomized rounding of semidefinite covering problems,
with further applications in quantum information theory [1].

In this paper we use the method of pessimistic estimators, originally formulated in [24],1 to deran-
domize the Chernoff bound of [1], and in the process derandomize the Alon-Roichman theorem and the
randomized rounding of covering SDP’s.

The results of this paper prove the claimed applications of our previous paper [33], and in fact
supersede them in simplicity and efficiency. However, we discovered a fatal mistake in the analysis
of using an expander sampler in [33], and it remains open whether the expander sampler achieves the
deviation bound claimed there (or something asymptotically equivalent). For details on the problem
with the previous work, seeAppendixA.

Arora and Kale [4] independently reached results similar to the ones presented in this paper that
imply the applications to constructing expanding Cayley graphs and semidefinite covering programs.

The paper is organized as follows. InSection2 we define the linear algebra notation we use and
prove the Chernoff bounds of Ahlswede-Winter, given inTheorem 2.6andTheorem 2.8. In Section3 we
review the method of pessimistic estimators and how it is used to derandomize algorithms. InSection4
we construct pessimistic estimators for the Ahlswede-Winter Chernoff bounds. Finally we apply these
estimators to derandomize the construction of Cayley expanders inSection5 and to derandomize the
rounding of integer covering SDP’s inSection6.

1The simpler method of conditional probabilities was described earlier in the first edition of [29]. Ideas similar to those
of [24] also appeared in [7].
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2 Matrix-valued random variables and the Chernoff bound of Alhswede
and Winter

We will work with the setMd of real symmetricd×d matrices.2 We letId denote the identity matrix in
Md, and will write simplyI when the dimension is clear. For anyA∈ Md we letλ1(A) ≥ . . . ≥ λd(A)
denote the eigenvalues ofA in non-increasing order. Recall that every matrixA∈Md has an orthonormal
eigenbasis.

We will measure distance between matrices using the operator norm

‖A‖= max
v

‖Av‖
‖v‖

= max
i
|λi(A)| .

We will also frequently use the trace, Tr(A) = ∑d
i=1 λi(A). It is well-known that for any orthonormal

basisv1, . . . ,vd ∈ Rd we have that Tr(A) = ∑d
i=1〈vi ,Avi〉, where〈·, ·〉 denotes the usual inner product

overRd.
We say that a matrixA∈Md is positive semidefinite (p.s.d.) if all its eigenvalues are non-negative.

We will use the fact thatA is p.s.d. iff for allv∈Rd, 〈v,Av〉 ≥ 0. We letA≥ 0 denote thatA is p.s.d. We
use the ordering of symmetric matrices given by this definition, namelyA≤ B iff B−A≥ 0. For two
matricesA≤ B, we will let [A,B] denote the set of all symmetric matricesC such thatA≤C andC≤ B.

We will work with the matrix exponential, which is defined by

exp(A) =
∞

∑̀
=0

A`

`!
.

Recall that the matrix exponential is convergent for all matrices. Furthermore, it is not hard to see for
A ∈ Md that an eigenbasis ofA is also an eigenbasis of exp(A) and thatλi(exp(A)) = eλi(A) for all
1≤ i ≤ d. Also, for allA∈Md, it holds that exp(A)≥ 0.

We will consider matrix-valued random variables of the following form. We letf : [n] → [−Id, Id],
where [n] = {1, . . . ,n}. Let X be a distribution (not necessarily uniform) over[n], and consider the
variable f (X). This is a natural extension of bounded discrete random variables over the reals, which
may be thought of as functionsf : [n] → [−1,1]. We will let the expectation off (X) be the obvious
thing: E[ f (X)] = ∑n

i=1Pr[X = i] f (i). Note that because Tr is linear,E and Tr commute:E[Tr( f (X))] =
Tr(E[ f (X)]). We let supp(X) denote the set of all values ofX that occur with non-zero probability.
When we say that something holds for a random variableX always, we mean that it holds for every
element in supp(X).

We will use the following useful facts several times:

Fact 2.1. If A,B∈Md andB≥ 0, then Tr(AB)≤ ‖A‖ ·Tr(B).

Proof. Let v1, . . . ,vd be the orthonormal eigenbasis ofA, with corresponding eigenvaluesλi = λi(A).
Then we may write

Tr(AB) =
d

∑
i=1

〈vi ,ABvi〉=
d

∑
i=1

λi〈vi ,Bvi〉 .

2All our results extend to complex Hermitian matrices, or abstractly to self-adjoint operators over any Hilbert space where
the operations of addition, multiplication, trace, exponential, and norm are efficiently computable.
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SinceB≥ 0 we know that〈vi ,Bvi〉 ≥ 0, so we get

Tr(AB)≤
d

∑
i=1

max
j

λ j〈vi ,Bvi〉 ≤ ‖A‖ ·Tr(B) .

Theorem 2.2 (Golden-Thompson inequality, [12, 31]). For A,B∈Md, we have

Tr(exp(A+B))≤ Tr(exp(A)exp(B)) .

The proof of this is outside the scope of this paper.
Ahlswede and Winter introduce a generalization of Markov’s inequality for matrix-valued random

variables.

Theorem 2.3 (Markov’s inequality [1]). For anyγ > 0, any function g: [n]→Md such that g(x)≥ 0
for all x ∈ [n], and for any random variable X over[n], we have

Pr[g(X) 6≤ γI ]≤ 1
γ
Tr(E[g(X)]) .

Proof.

Pr[g(X) 6≤ γI ] = Pr[‖g(X)‖> γ]≤ 1
γ
E[‖g(X)‖] .

Sinceg(X)≥ 0 always, we have‖g(X)‖ ≤ Tr(g(X)) always, so we get:

≤ 1
γ
E[Tr(g(X))] = 1

γ
Tr(E[g(X)]) .

The following Theorem 2.4is the main theorem proving [1]’s Chernoff-type bound. We will use
Theorem 2.4, which holds for all distributions, to derive two corollaries (Theorem 2.6andTheorem 2.8),
which hold for more specific kinds of distributions. In addition, the proof ofTheorem 2.4will give us
the pessimistic estimators corresponding to the two corollaries.

Theorem 2.4 ([1]). Suppose f: [n] → [−Id, Id] and let X1, . . . ,Xk be arbitrary independent random
variables distributed over[n]. Then for allγ ∈ R:

Pr
[

1
k

k

∑
j=1

f (Xj) 6≤ γI
]
≤ de−tγk

k

∏
j=1

∥∥E[exp(t f (Xj))]
∥∥ .

Proof. The proof begins analogously to the real-valued case, generalizing the classical Bernstein trick.
We first multiply by an optimization constantt > 0 and exponentiate to obtain

Pr
[

1
k

k

∑
j=1

f (Xj) 6≤ γI
]

= Pr
[
exp
(

t
k

∑
j=1

f (Xj)
)
6≤ etγkI

]
.
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The equality holds because for anyA ∈ Md,α ∈ R, the statementA 6≤ αI is equivalent to saying
some eigenvalue ofA is larger thanα, which is the same as saying that some eigenvalue of exp(A) is
larger thaneα , which in turn is equivalent to exp(A) 6≤ eα I . Then the following inequality is a direct
consequence ofTheorem 2.3since exp(A)≥ 0 for all A∈Md.

Pr
[

1
k

k

∑
j=1

f (Xj) 6≤ γI
]
≤ e−tγkTr

(
E
[
exp
(

t
k

∑
j=1

f (Xj)
)])

. (2.1)

Then we applyFact 2.1and the Golden-Thompson InequalityTheorem 2.2to bound the expression
in a manageable form. This step will be expressed in the following lemma.

Lemma 2.5. For any matrix A∈Md, any f : [n]→Md and any random variable X over[n], we have

Tr
(
EX[exp(A+ f (X))]

)
≤
∥∥E[exp( f (X))]

∥∥ ·Tr(exp(A)) .

To obtainTheorem 2.4, we simply applyLemma 2.5to Inequality (2.1) repeatedly:

Pr
[

1
k

k

∑
j=1

f (Xj) 6≤ γI
]
≤ e−tγkTr

(
E
[
exp
(

t
k

∑
j=1

f (Xj)
)])

= e−tγk EX1,...,Xk−1

[
Tr

(
EXk

[
exp
(

t
k−1

∑
j=1

f (Xj)+ t f (Xk)
)])]

(By independence)

≤ e−tγk EX1,...,Xk−1

[∥∥E[exp(t f (Xk))]
∥∥ ·Tr

(
exp
(

t
k−1

∑
j=1

f (Xj)
))]

(ApplyLemma 2.5)

= e−tγk
∥∥E[exp(t f (Xk))]

∥∥ ·Tr

(
EX1,...,Xk−1

[
exp
(

t
k−1

∑
j=1

f (Xj)
)])

(Put expectation back inside)

≤ e−tγk
k

∏
j=1

∥∥E[exp(t f (Xj))]
∥∥ ·Tr(I) (Repeat k times . . . )

= de−tγk
k

∏
j=1

∥∥E[exp(t f (Xj))]
∥∥ . (2.2)

This completes the proof moduloLemma 2.5.

Proof ofLemma 2.5.

Tr(E[exp(A+ f (X))]) = E[Tr(exp(A+ f (X)))] (Since trace and expectation commute)

≤ E[Tr(exp( f (X))exp(A))] (Applying the Golden-Thompson inequality)

≤ Tr(E[exp( f (X))]exp(A)) (Commuting trace and expectation again)

≤
∥∥E[exp(t f (X))]

∥∥ ·Tr(exp(A)) . (ByFact 2.1)

THEORY OFCOMPUTING, Volume 4 (2008), pp. 53–76 57

http://dx.doi.org/10.4086/toc


A. W IGDERSON ANDD. X IAO

Now we will draw two corollaries from this main theorem. These two corollaries are useful in
different settings; the first guarantees that the probability of an additive deviation is small, while the
second that of a multiplicative deviation.

Theorem 2.6 ([1]). Let f : [n] → [−Id, Id]. Let X be distributed over[n] with EX[ f (X)] = 0, and let
X1, . . . ,Xk be i.i.d. copies of X. Then for all1 > γ > 0:3

Pr
[

1
k

k

∑
i=1

f (Xi) 6≤ γI
]
≤ de−γ2k/4 .

Note that the other direction1k ∑k
i=1 f (Xi) 6≥ −γI holds with the same bound by considering− f .

Proof. We require onlyTheorem 2.4and a simple claim. Because all theXi are i.i.d.Theorem 2.4gives
us

Pr
[

1
k

k

∑
i=1

f (Xi) 6≤ γI
]
≤ de−tγk

∥∥E[exp(t f (X))]
∥∥k

.

We use the following claim to bound the RHS.

Claim 2.7.
∥∥E[exp(t f (X))]

∥∥≤ 1+ t2 for t ≤ 1/2.

Proof. This follows from the Taylor expansion of exp:∥∥E[exp(t f (X))
∥∥=

∥∥E[I + t f (X)+(t f (X))2/2+ . . .]
∥∥

=
∥∥I + t E[ f (X)]+E[(t f (X))2/2+ . . .]

∥∥ .

SinceE[ f (X)] = 0, applying the triangle inequality, and using‖ f (X)‖ ≤ 1 always, we have

≤ 1+
∞

∑̀
=2

t`/`! .

Sincet = γ/2≤ 1/2 this gives

≤ 1+ t2 .

3For the sake of simplicity, no attempt was made to optimize the constant in the exponent of the bound in this analysis. To
get a tighter bound, we can apply the analysis of [1] to get a bound of

de−kD
( 1+γ

2 ‖ 1
2

)
.

HereD(p‖q) = p(logp− logq)+(1− p)(log(1− p)− log(1−q)) is the relative entropy function, and using the approximation
D((1+γ)/2‖1/2)≥ γ2/(2ln2), which can be shown by looking at the Taylor expansion ofD(·‖·), we have the improved bound
of de−kγ2/(2ln2).
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We will chooset = γ/2≤ 1/2, so we may applyClaim 2.7to Theorem 2.4to get

Pr
[

1
k

k

∑
i=1

f (Xi) 6≤ γI
]
≤ de−tγk(1+ t2)k

≤ de−tγk+t2k (Using1+x≤ ex for all x ∈ R)

≤ de−γ2k/4 . (Choosing t= γ/2)

Theorem 2.8 ([1]). Let f : [n]→ [0, Id]. Let X be distributed over[n], with M = EX[ f (X)]≥ µI for some
µ ∈ (0,1). Let X1, . . . ,Xk be i.i.d. copies of X. Then we have, for allγ ∈ [0,1/2],

Pr
[

1
k

k

∑
i=1

f (Xi) 6≥ (1− γ)µI
]
≤ de−γ2µk/(2ln2) .

Proof. We can assume without loss of generality thatM = µI .4 Because the direction of this bound is
the opposite of what we proved inTheorem 2.4, we will work with I − f to get:

Pr
[

1
k

k

∑
i=1

f (Xi) 6≥ (1− γ)µI
]

= Pr
[

1
k

k

∑
i=1

(I − f (Xi)) 6≤ (1− (1− γ)µ)I
]
. (2.3)

Applying Theorem 2.4

≤ de−t(1−(1−γ)µ)k∥∥E[exp(t(I − f (X)))]
∥∥k

(2.4)

= d
∥∥E[exp(−t f (X))et(1−γ)µ ]

∥∥k
. (2.5)

This last quantity was analyzed in the proof of Theorem 19 of [1], with the following conclusion
which we state without proof:

Claim 2.9 ([1]). For t = log
(1−(1−γ)µ

1−µ

1
(1−γ)

)
, we have∥∥E[exp(−t f (X))]et(1−γ)µ

∥∥≤ e−γ2µ/(2ln2) .

Applying this claim toInequality (2.5) gives us the theorem.

3 Method of pessimistic estimators

First we review the method of pessimistic estimators, due to Raghavan [24]. The setting is the following:
we have a random variableX and we know that with some non-zero probability an eventσ(X) occurs,
i. e., Pr[σ(X) = 1] > 0, whereσ : supp(X)→{0,1}, σ(x) = 1 iff x is in the event. We wish to efficiently
and deterministically find a particularx∈ supp(X) such thatσ(x) = 1.

4If not, we could work withg(x) = µM−1/2 f (x)M−1/2 instead.
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Our application of pessimistic estimators is to derandomizing probabilistic algorithms. In particular,
suppose we have a randomized algorithm that constructs an object, and with some non-zero probability
that object satisfies some property. Thus, our eventσ is the event that the object satisfies the property,
and our goal is to deterministically and efficiently find the object. In this paper our two main applications
are to deterministically and efficiently find a small generating set of a group that satisfies expansion, and
to find an integer solution to a SDP covering problem that satisfies feasibility and some approximation
guarantee. Both problems were previously known to have randomized algorithms, and we use our
pessimistic estimators to derandomize these algorithms.

We will only be concerned with random variables with finite state space with a product structure, and
we will sub-divide the variable into many parts. Thus we use the notation~X to denote a random variable
wherew.l.o.g.supp(~X)⊆ [n]k for somek,n∈ N (these will be chosen according to the application). Let
~X = (X1, . . . ,Xk), where eachXi ∈ [n]. To find a “good” setting of~X, we will iteratively find settings of
X1, thenX2, and so forth until we have a complete setting of~X.

By the definition of expectation

Pr
~X

[σ(~X) = 0] = EX1

[
Pr
[
σ(~X) = 0 | X1

]]
.

Now by averaging there must exist at least one settingx1 ∈ [n] of X1 such that

Pr
[
σ(~X) = 0 | X1 = x1

]
≤ EX1

[
Pr
[
σ(~X) = 0 | X1

]]
.

We setX1 = x1, and then repeat the same reasoning forX2, . . . ,Xk. Let us denote the resulting setting
of ~X by ~x. Thus at the end we have Pr[σ(~x) = 0] ≤ Pr[σ(~X) = 0]. But note that we supposed that
Pr[σ(~X) = 0] < 1, and since~x is afixedvector, it must be that Pr[σ(~x) = 0] = 0 and thereforeσ(~x) = 1.

The difficulty with turning this into an algorithm is in calculating the probabilities, for each 1≤ i ≤ k
and,∀x1, . . . ,xi ∈ [n]

Pr
Xi+1,...,Xk

[σ(~X) = 0 | X1 = x1, . . . ,Xi = xi ]

since they may not be efficiently computable. Fortunately we may relax the requirements slightly by the
following.5

Definition 3.1. Let σ : [n]k → {0,1} be an event on a random variable~X distributed over[n]k and
suppose Pr[σ(~X) = 1] > 0. We say thatφ0, . . . ,φk, φi : [n]i → [0,1] (hereφ0 is just a number in[0,1]),
arepessimistic estimatorsfor σ if the following hold.

1. For anyi and any fixedx1, . . . ,xi ∈ [n], we have that

Pr
Xi+1,...,Xk

[σ(x1, . . . ,xi ,Xi+1, . . . ,Xk) = 0]≤ φi(x1, . . . ,xi) .

5Our definition is stronger than the standard definition of pessimistic estimators, in that in the second condition usually all
that is required is for allx1, . . . ,xi ∈ [n], there existsxi+1 ∈ [n] such thatφi+1(x1, . . . ,xi+1)≤ φi(x1, . . . ,xi). But our estimators
satisfy the stronger definition and we will find it useful, especially when composing estimators (seeLemma 3.3).
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2. For anyi and any fixedx1, . . . ,xi ∈ [n]:

EXi+1 φi+1(x1, . . . ,xi ,Xi+1)≤ φi(x1, . . . ,xi) .

We will also want the pessimistic estimators to beefficient, namely eachφi is efficiently computable,
anduseful, which meansφ0 < 1. This last condition is becauseφ0 is a bound on the initial probability of
failure, which we need to be strictly less than 1.

Theorem 3.2 ([24]). If there exist efficient and useful pessimistic estimators(φ0, . . . ,φk) for an eventσ ,
then one can efficiently compute afixed~x∈ [n]k such thatσ(~x) = 1.

Proof. We pickx1, . . . ,xk one by one. At step 0 we haveφ0 < 1 since the estimators are useful.
At stepi, we havex1, . . . ,xi already fixed. Enumerate overxi+1 ∈ [n] and choose the value such that

φi+1(x1, . . . ,xi+1)≤ φi(x1, . . . ,xi) < 1. We are guaranteed that

EXi+1[φi+1(x1, . . .xi ,Xi+1)]≤ φi(x1, . . . ,xi)

by Property2 of Definition3.1, and so by averaging there must exist a fixedxi+1 ∈ [n] that is at most the
expectation on the LHS of the above inequality. We can compute the value of the estimator efficiently
by hypothesis.

Finally, we have afterk steps thatφk(~x) < 1 and byProperty1 we have that Pr[σ(~x) = 0]≤ φk(~x) < 1,
and thereforeσ(~x) = 1.

The algorithm runs throughk steps, and each step is efficient, so the overall algorithm is efficient.

We will find it useful to compose estimators, which is possible from the following lemma.

Lemma 3.3. Supposeσ ,τ : [n]k → {0,1} are events on~X, which is distributed over[n]k. Suppose that
(φ0, . . . ,φk),(ψ0, . . . ,ψk) are pessimistic estimators forσ ,τ respectively. Then(φ0+ψ0, . . . ,φk+ψk) are
pessimistic estimators for the eventσ ∩ τ.

Proof. We need to verify the properties ofDefinition3.1.

1. This is verified by a union bound:

Pr[(σ ∩ τ)(x1, . . . ,xi ,Xi+1, . . . ,Xk) = 0]
≤ Pr[σ(x1, . . . ,xi ,Xi+1, . . . ,Xk) = 0]+Pr[τ(x1, . . . ,xi ,Xi+1, . . . ,Xk) = 0]
≤ (φi +ψi)(x1, . . . ,xi) .

2. This is immediate from linearity of expectation.
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4 Applying pessimistic estimators to the AW bound

The method of pessimistic estimators extends to the AW Chernoff bound. We will first describe pes-
simistic estimators forTheorem 2.6and then forTheorem 2.8. They are essentially identical except for
the difference in distributions in the two settings, and the proofs that the pessimistic estimators satisfy
Definition3.1rely mainly onLemma 2.5. In both cases, they allow us to efficiently and deterministically
find settingsx1, . . . ,xk such that bad event bounded byTheorem 2.6(resp.Theorem 2.8) does not occur.

Theorem 4.1. Let f : [n]→ [−Id, Id]. Let X be distributed over[n] with EX[ f (X)] = 0, and let X1, . . . ,Xk

be i.i.d. copies of X. Fix1 > γ > 0. Let t= γ/2. Suppose thatE[exp(t f (X))] is efficiently computable.
Combining the notation ofSection2 andSection3, we let~X = (X1, . . . ,Xk) with Xi ∈ [n] and we let

σ : [n]k →{0,1} be the eventσ(~x) = 1 if 1
k ∑k

i=1 f (xi)≤ γI and σ(~x) = 0 otherwise. Then the following
(φ0, . . . ,φk),φi : [n]i → [0,1] areefficient pessimistic estimatorsfor σ :

φ0 =de−tγk
∥∥E[exp(t f (X))]

∥∥k (which is at most de−γ2k/4) ,

φi(x1, . . . ,xi) =de−tγkTr

(
exp
(

t
i

∑
j=1

f (x j)
))

·
∥∥E[exp(t f (X))]

∥∥k−i
.

Proof. We verify the properties ofDefinition3.1.

1. FromInequality (2.1):

Pr
[

1
k

k

∑
i=1

f (Xi) 6≤ γI
]
≤ de−tγkTr

(
E
[
exp
(
t

k

∑
j=1

f (Xj)
)])

≤ de−tγkTr

(
E
[
exp
(
t

i

∑
j=1

f (Xj)
)]) k

∏
j=i+1

∥∥E[exp(t f (Xj))]
∥∥ .

By fixing Xj = x j for all j ≤ i, we derive that

Pr
[

1
k

k

∑
i=1

f (Xi) 6≤ γI | X1 = x1, . . . ,Xi = xi

]
≤ de−tγkTr

(
exp
(

t
i

∑
j=1

f (x j)
))

·
∥∥E[exp(t f (X))]

∥∥k−i

= φi(x1, . . . ,xi) .

2. We use the following derivation, where the inequality follows fromLemma 2.5:

EXi+1[φi+1(x1, . . . ,xi ,Xi+1)]

= de−tγkTr

(
EXi+1

[
exp
(
t

i

∑
j=1

f (xi)+ t f (Xi+1)
)])

· ‖E(exp(t f (X)))‖k−i−1

≤ de−tγkTr

(
exp
(

t
i

∑
j=1

f (xi)
))

·
∥∥E(exp(t f (X)))

∥∥k−i

= φi(x1, . . . ,xi) .
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To see that theφi are efficiently computable, we will specify the input to the algorithm as a function
f (which we assume is given as a list ofd× d matrices f (1), . . . , f (n)) and 1k. Thus we desire the
algorithm to be computable in time poly(n,d,k). We require multiplication, addition, trace, matrix
exponential, and norm computations. The first three are obviously efficient; the last two are efficient
because eigenvalues of ad×d matrix can be computed (and hence it can be diagonalized thus making
the exponential and norm computations trivial) inO(d3) numerical operations [16]. On a machine with
finite precision, we can truncate the estimators to a sufficiently fine resolution so that the truncated
estimators behave essentially as the real-valued estimators do.

Theorem 4.1gives us pessimistic estimators(φ0, . . . ,φk) for σ , and the same proof gives efficient pes-
simistic estimators(ψ0, . . . ,ψk) for the eventτ(~x) = 1 iff 1

k ∑k
i=1 f (xi) ≥ −γI by applyingTheorem 2.6

to− f . Combining these with theφi gives us the following.

Corollary 4.2. Let f : [n]→ [−Id, Id]. Let X be distributed over[n] with EX[ f (X)] = 0, and let X1, . . . ,Xk

be i.i.d. copies of X. Fix1 > γ > 0 and fix t= γ/2. Suppose thatE[exp(t f (X))] andE[exp(−t f (X))]
are efficiently computable.

Let η : [n]k → {0,1} be the eventη(~x) = 1 if ‖1
k ∑k

i=1 f (xi)‖ ≤ γ and η(~x) = 0 otherwise. Then
(φ0 +ψ0, . . . ,φk +ψk) are efficient pessimistic estimators forη .

Proof. Note thatη = σ ∩ τ. Efficiency is clear. We can applyLemma 3.3to get that(φ0 +ψ0, . . . ,φk +
ψk) is a pessimistic estimator for the eventη = σ ∩ τ.

This allows us to derandomizeTheorem 2.6efficiently. Notice that in general the only property ofX
that we need is to be able to computeE[exp(t f (X))] andE[exp(−t f (X))].6 This is of course true when
X is uniform, or when we can efficiently compute Pr[X = x] for eachx∈ [n]. The actual distribution is
irrelevant, since we exhaustively search through the entire space for the choice of eachXi .

Theorem 4.3. Let f : [n] → [−Id, Id] be such that there exists a distribution X over[n] such that
E[ f (X)] = 0. Then for k= O( 1

γ2 logd), we can efficiently and deterministically find~x ∈ [n]k such that

‖1
k ∑k

i=1 f (xi)‖ ≤ γ.

Proof. Use the efficient pessimistic estimators ofCorollary 4.2. Pickk= O( 1
γ2 logd) such thatφ0+ψ0 <

1 and so that the estimators are useful. We may then applyTheorem 3.2to get the result.

We can construct pessimistic estimators forTheorem 2.8in the same way.

Theorem 4.4. Let f : [n] → [0, Id]. Let X be distributed over[n], with M = EX[ f (X)] ≥ µI for some
µ ∈ (0,1). Let X1, . . . ,Xk be i.i.d. copies of X. Fix

t = log

(
1− (1− γ)µ

1−µ

1
(1− γ)

)
.

6In fact this is only necessary because we want a two-sided guarantee, i. e.,1
k ∑k

i=1 f (Xi) ≤ γI and 1
k ∑k

i=1 f (Xi) ≥ −γI .
It is not necessary if we only require a one-sided guarantee, such as in the setting ofTheorem 4.4, where we only want
1
k ∑k

i=1 f (Xi) ≥ (1− γ)µI . In this second setting, when pickingXi to minimizeφi , notice that the quantity‖E[exp(t f (X))]‖
does not change with different choices ofXi , so the only part we need to compute is the trace part, which does depend on the
choice ofXi . Thus it suffices to compute the choice ofXi that minimizes the trace part of theφi .
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Let~X = (X1, . . . ,Xk) with Xi ∈ [n] and we letσ : [n]k →{0,1} be the eventσ(~x) = 1 if 1
k ∑k

i=1 f (xi)≥
(1− γ)µI and σ(~x) = 0 otherwise. Then the following(φ0, . . . ,φk),φi : [n]i → [0,1] are efficient pes-
simistic estimators forσ :

φ0 =detk(1−γ)µ
∥∥E[exp(−t f (X))]

∥∥k (which is at most de−γ2µk/(2 ln2)) ,

φi(x1, . . . ,xi) =detk(1−γ)µTr

(
exp
(
−t

i

∑
j=1

f (x j)
))

·
∥∥E[exp(−t f (X))]

∥∥k−i
.

Proof. The proof follows exactly along the lines ofTheorem 4.1.

Theorem 4.5. Let f : [n] → [0, Id] be such that there exists a distribution X over[n] and a number
µ ∈ (0,1) such thatE[ f (X)] ≥ µI. Then for k= O( 1

γ2µ
logd), we can efficiently and deterministically

find~x∈ [n]k such that1k ∑k
i=1 f (xi)≥ (1− γ)µI.

Proof. Use the efficient pessimistic estimators ofTheorem 4.4, and notice for our choice ofk thatφ0 < 1
so they are useful. Then applyTheorem 3.2.

5 O(logn) expanding generators for any group

Our main application is a complete derandomization of the Alon-Roichman [3] theorem, which states
that a certain kind of expander graph may be constructed by random sampling (details below). Expander
graphs have a central role in theoretical computer science, especially in but not limited to the study of
derandomization. Indeed, they have found a large number of applications in a variety of areas such as
deterministic amplification [9, 18], security amplification in cryptography [14], hardness of approxima-
tion [5, 2], extractor construction (e.g. see surveys [23, 13, 25]), construction of efficient error-correcting
codes [30, 8], construction ofε-biased spaces [22] and much more. See [17] for a comprehensive survey.

We derandomize the proof of the Alon-Roichman theorem given by [20] (see also [21]) to give a
deterministic and efficient construction of the expanding generating set. We show how it implies an
optimal solution to a problem of Shpilka and Wigderson [28] (see also [15]), significantly improving
their results.

5.1 Definitions

Given an undirectedd-regular graphG= (V,E) onn vertices, we define its normalized adjacency matrix
A by settingAi j = ei j /d whereei j is the number of edges between verticesi and j (we allow self-loops
and multiple edges). The matrixA is real and symmetric.

We assumeG is connected. It is well known that the set of eigenvalues ofA is of the form
1 = λ1(A) > λ2(A) ≥ . . . ≥ λn(A). (The strict separation betweenλ1(A) andλ2(A) follows from con-
nectivity.) The eigenvalues ofG are the eigenvalues ofA. Note that 1 is an eigenvalue of multiplicity 1,
and with corresponding eigenvectoru = [1/

√
n, . . . ,1/

√
n]T . The orthogonal projection to the subspace

spanned by the eigenvectoru is given by the matrixJ/n, whereJ is the all 1’s matrix.
The Cayley graph Cay(H;S) on a groupH with respect to the generating multi-setS⊂ H is the

graph whose vertex set isH, and whereh andh′ are connected by an edge if there existss∈ Ssuch that
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h′ = hs(allowing for multiple edges for multiple elements inS). We requireS to be symmetric, namely
for eachs∈ S, we also haves−1 ∈ S(this is to make the graph undirected). Letλ (Cay(H;S)) denote the
second-largest eigenvalue (in absolute value) of the normalized adjacency matrix of the Cayley graph.

Our goal is to design an algorithm that, for a fixedγ < 1, takes as input the multiplication table of a
groupH of ordern and efficiently constructs a small generating setSsuch thatλ (Cay(H;S)) < γ. This
is given by the following theorem.

Theorem 5.1. Fix γ < 1. Then there exists an algorithm running in timepoly(n) that, given a group H
of order n, constructs a symmetric set S⊆ H of size|S|= O( 1

γ2 logn) such thatλ (Cay(H;S))≤ γ.

We prove this after presenting the randomized algorithm.

5.2 A randomized algorithm

Theorem 5.2 ([3, 20, 21]). Fix 0 < γ < 1, and let H be a group of order n. Identify H with[n]. Let
X1, . . . ,Xk be chosen randomly in H, where k= O( 1

γ2 logn). We let the multi-set S be(X1, . . . ,Xk), and
we have

Pr
S⊆H

[λ (Cay(H;StS−1)) > γ] < 1

where StS−1 denotes the symmetric closure of S, namely the number of occurrences of s and s−1 in
StS−1 equals the number of occurrences of s in S.

To identify the notation in the following proof precisely with that used inSection4, we have thatS
corresponds to~X, |S|= k, and it will become clear that in this setting thatn = d = |H|.

Proof. Consider then×n matricesPh for h∈ H, where eachPh is then×n permutation matrix of the
action ofh by right multiplication. Consider now12(Ph +Ph−1). It is not hard to see that the normalized
adjacency matrixA of Cay(H;StS−1) is given by

A = 1
k

k

∑
i=1

1
2(PXi +PX−1

i
) .

We wish to boundλ (A). We know that the largest eigenvalue is 1 and corresponds toJ/n whereJ is
the all 1 matrix. Since we want to analyze the second-largest eigenvalue, we consider

(I −J/n)A = 1
k

k

∑
i=1

(I −J/n)1
2(PXi +PX−1

i
) .

We let our matrix-valued function bef (h) = (I −J/n)1
2(Ph +Ph−1), so that

λ (A) =
∥∥(I −J/n)A

∥∥=
∥∥∥1

k

k

∑
i=1

f (Xi)
∥∥∥ .

It is straightforward to verify thatf (h) ∈Mn, ‖ f (h)‖ ≤ 1 andEh∈H [ f (h)] = 0.
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Thus we may applyTheorem 2.6to get that

Pr[λ (A) > γ] = Pr
[∥∥∥1

k

k

∑
i=1

f (Xi)
∥∥∥> γ

]
(5.1)

≤ 2ne−γ2|S|/4

so pickingk = O( 1
γ2 logn) suffices to make this probability less than 1.

5.3 Derandomizing

Proof ofTheorem 5.1. To derandomize and obtainTheorem 5.1, we applyCorollary 4.2to obtain effi-
cient pessimistic estimators for the eventσ(S) = 1 iff ‖1

k ∑k
i=1 f (Xi)‖ ≤ γ. We fix k = O( 1

γ2 logn) large
enough such that the probability of this event is non-zero (i. e., the estimators we got are useful). We
then applyTheorem 3.2to greedily choose successive elements ofH to be put inS in order to make an
expander.

5.4 Derandomized homomorphism testing

Theorem 5.1answers a question about the derandomization of affine homomorphism testers posed by
Shpilka and Wigderson [28]. In this section we will useTheorem 5.1to proveCorollary 5.4.

An affine homomorphismbetween two groupsH,H ′ is a map f : H → H ′ such thatf−1(0) f is a
homomorphism. An(δ ,η)-test for affine homomorphisms is a tester that accepts any affine homomor-
phism surely and rejects with probability 1−δ any f : H →H ′ which isη far from being an affine homo-
morphism. Here distance is measured by the normalized Hamming distance:d( f ,g) = Pr[ f (x) 6= g(x)],
where the probability is overx chosen uniformly fromH.

Shpilka and Wigderson [28] showed how to construct a testerTH×S efficiently using an expander
Cay(H;S) whereλ (Cay(H;S)) < λ : simply pick a random elementx∈ H and a random elementy∈ S
and check to see thatf (0) f (x)−1 f (xy) = f (y). It is clear this test acceptsf surely if f is an affine
homomorphism. [28] shows that if 12δ < 1−λ then this rejects with probability 1− δ any f that is
4δ/(1−λ )-far from being an affine homomorphism.

Theorem 5.3 ([28]). For all groups H,H ′ and S⊆ H an expanding generating set such that
λ (Cay(H;S)) < λ , we can construct a tester TH×S that surely accepts any affine homomorphism
f : H → H ′ and rejects with probability at least1− δ any f : H → H ′ which is4δ/(1− λ ) far from
being an affine homomorphism, given that12δ/(1−λ ) < 1. That is, TH×S is a (δ ,4δ/(1−λ ))-test for
affine homomorphisms.

In [28] the deterministic construction ofS gave a set of size|H|ε for arbitraryε > 0. The explicit
construction given in [28] requires thatTH×S use(1+ ε) log|H| random bits and asks whether it is
possible to improve this dependency on randomness.Theorem 5.1allows us indeed to improve this
dependency to the following.

Corollary 5.4. Given an arbitrary group H, one can construct in time|H|O(1) an affine homomorphism
tester for functions on H which uses onlylog|H|+ log log|H|+O(1) random bits.
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Proof ofCorollary 5.4. Theorem 5.3says we can construct a homomorphism tester that only uses ran-
domness to pick an element ofH and an element of an expanding generating set ofH. Theorem 5.1
implies this only requires log|H|+ log log|H|+ O(1) random bits since we can deterministically con-
struct an expanding generating set of size log|H| in polynomial time.

6 Covering SDP’s

Linear programming (LP) was one of the first tools computer scientists used to approximateNP-hard
problems. As a natural relaxation of integer programming (IP), linear programs give fractional solutions
to an IP, which may then be rounded to give provably good solutions to the original IP.

More recently, a more general class of relaxations,semidefinite programs(SDP’s), have been used by
computer scientists (e.g. [11, 6]) to give better approximation guarantees toNP-hard problems. SDP’s
may be solved in polynomial time (using e.g. the ellipsoid method or interior-point methods, see [26,
27, 35, 32]), and again the solution may be rounded to give a solution to the original IP.

In this section we will define a restricted class of integer SDP’s and show that our pessimistic esti-
mators will give a good approximation guarantee.

6.1 Definition

We define the notion ofinteger covering SDP’s, which are generalizations of integer covering linear
programs (see e.g. [19]). These programs take the following form: givenc∈ [0,1]n and f : [n]→ [0, Id],7

find y∈ Nn where

minimizecTy

with feasibility constrainty1 f (1)+ . . .+yn f (n)≥ I
(6.1)

where the feasibility inequality uses the p.s.d. ordering. The vectorc may be interpreted as a cost vector,
and we wish to minimize the cost of a solutiony∈ Nn. This is relaxed into a covering SDP by allowing
y∈Rn

+ whereR+ denotes the non-negative reals, which we would then like to round to a solution ˆy∈Nn

that is not too much more costly. We will letOPTdenote the optimal value of therelaxedcovering SDP.
Our main theorem is as follows:

Theorem 6.1. Suppose we have a program as inEquation(6.1) and suppose we have a feasible relaxed
solution vector y∈ Rn

+. Then we can find in timepoly(n,d) a feasible integer solution̂y such that

cT ŷ≤O(logd) ·cTy.

Corollary 6.2. Given an integer covering SDP with optimum OPT, we can efficiently find an integer
solution with cost at most O(logd) ·OPT.

This is done by using a randomized rounding algorithm given implicitly in [1], and then derandom-
izing using pessimistic estimators.

7We restrict ourself to this scale for simplicity. Our results apply to any bounded function with a constant loss in efficiency.
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Also, note that this is a natural generalization of integer covering linear programs of the following
form: for a cost vectorc∈ Rn

+, a matrixA∈ Rd×n
+

minimizecTy

subject to feasibility constraints that for alli ∈ [d]: (Ay)i ≥ 1.

This may be viewed as the special case of integer covering SDP’s where all the matrices are diagonal;
eachf (i) is just the diagonal matrix withi’th column ofA along the diagonal. Integer covering LP’s, in
turn, are a generalization of the very familiar set cover problem, which are exactly the programs where
the columns ofA are either 0 or 1. In the language of set cover, the universe is[n] and the columns ofA
are the indicator vectors for the sets we may use to cover[n].

Our approximation for integer covering SDP’s will imply a new approximation algorithm for all
these covering problems with a logarithmic approximation guarantee. Thus in a sense our algorithm
gives optimal approximation factors (up to constants), since a logarithmic approximation factor is opti-
mal (up to constant factors) assuming thatP 6= NP, as shown by [10]. This connection is discussed in
more detail inSection6.4.1.

6.2 A randomized rounding algorithm

First suppose we have a solution to the SDP given by a vectory∈ Rn
+, and let us defineQ = ∑n

j= y j . In
the case whereQ≥ n, we can get a trivial deterministic rounding scheme with approximation factor 2
by always rounding up, since this will increase the value of the program at most by an additiven. Thus
in the following we consider only programs whereQ≤ n.

Suppose we have a program as inEquation (6.1) and we have solved it efficiently to obtain a solution
y, wherecTy = OPT. Let X be distributed according to the distribution over[n] given by normalizingy,
i. e.,

Pr[X = i] = yi/Q.

Note that, becausey is a feasible solution, we haveEX[ f (X)] ≥ 1
QI . It was implicitly shown in [1] that

samplingk = Q·O(logd) elements from[n] according to the distributionX and takingf (Xi) (1≤ i ≤ k)
gives us a feasible solution with approximation factorO(logd). We state this formally:

Theorem 6.3 ([1]). Suppose we sample k= Q · 8ln2d times from[n] according to X in order to get
X1, . . . ,Xk. Furthermore, for each1≤ j ≤ n, we define the random variables

Ŷj = |{i | Xi = j}| ,

the number of times that j is sampled, and letŶ = (Ŷ1, . . . ,Ŷn).8 Then, with non-zero probability, we
have that

f (X1)+ f (X2)+ . . .+ f (Xk)≥ I and cTŶ ≤ cTy·16ln2d .

Proof. We will use a union bound to show that the probability that either

∑
j

f (Xj) 6≥ I or cTŶ > cTy·16ln2d

8Notice that∑k
i=1 f (Xi) = ∑n

j=1Ŷj f ( j).
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occurs is strictly less than 1.
All expectations below are over theXi (since theŶj are totally determined by theXi).

Pr
[ k

∑
j=1

f (Xj) 6≥ I
]

= Pr
[

1
k

k

∑
j=1

f (Xj) 6≥ 1
k I
]
. (6.2)

We know from the fact thaty is feasible thatE[ f (X)]≥ 1
QI , and so fork > 2Q we get:

Pr
[ k

∑
j=1

f (Xj) 6≥ I
]
≤ Pr

[
1
k

k

∑
j=1

f (Xj) 6≥ 1
2

1
QI
]
.

InvokingTheorem 2.8, we obtain

Pr
[ k

∑
j=1

f (Xj) 6≥ I
]
≤ de−k/(8Q) .

Therefore if we takek = Q·8ln2d with probability greater than 1/2 we have∑ j f (Xj)≥ I .
For the second event it is easy to see thatcTŶ = ∑k

j=1cXj . Furthermore, a simple calculation shows
that for eachj, E[cXj ] = cTy/Q. Thus, by Markov we have:

Pr[cTŶ > cTy·16ln2d] = Pr

[
k

∑
j=1

cXj > cTy·16ln2d

]

<
E
[
∑k

j=1cXj

]
cTy·16ln2d

(6.3)

=
k ·cTy/Q

cTy·16ln2d
.

Expandingk = Q·8ln2d shows that this last expression is at most 1/2.
Thus each bad event happens with probability less than 1/2, and so the probability that either bad

event happens is strictly less than 1.

6.3 Derandomizing

Derandomizing is a simple proposition. Given a program, first solve it using a standard efficient tech-
nique ([26, 27, 35], for a survey see [32]), with solutiony andQ = ∑n

j=1y j . Let k = Q ·8ln2d. In the
proof of Theorem 6.3at Inequality (6.2), we can applyTheorem 4.4to get pessimistic estimatorsφi for
the event∑k

j=1 f (Xj) ≥ I , which we callσ . We only need now a pessimistic estimator(ψ0, . . . ,ψk) for
the event of the solution not being too costly, which we callτ.

We defineψi : [n]i → [0,1] as follows:

ψi(x1, . . . ,xi) =
∑i

j=1cx j +(k− i)E[cX]
cTy·16ln2d

.
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It is clear that theψi are efficiently computable. They satisfy the properties ofDefinition3.1. This is
easy to see, since theψi are exactly the expressions given by a Markov bound on the eventτ, and such
expressions always satisfyDefinition3.1. We write this out explicitly here for completeness.

1. By an application of Markov (this is the same as inInequality (6.3)), we see:

Pr

[
k

∑
j=1

cXj > cTy·16ln2d X1 = x1, . . . ,Xi = xi

]
≤

∑i
j=1cx j +(k− i)E[cX]

cTy·16ln2d

= ψ(x1, . . . ,xi) .

2. For estimators based on Markov, we actually have equality for this property.

EXi+1[ψi+1(x1, . . . ,xi ,Xi+1)] = EXi+1

[
∑i

j=1cx j +cXi+1 +(k− i−1)E[cX]
cTy·16ln2d

]

=
∑i

j=1cx j +(k− i)E[cXj ]
cTy·16ln2d

= ψi(x1, . . . ,xi) .

Theorem 6.4.Sinceφ0+ψ0 < 1 because of the choice of k= Q·8ln2d, we may invokeLemma 3.3to get
that (φ0 +ψ0, . . . ,φk +ψk) are efficient and useful pessimistic estimators for the event inTheorem 6.3.

Finally we may proveTheorem 6.1.

Proof ofTheorem 6.1. By Theorem 6.4we have pessimistic estimators for the event inTheorem 6.3, and
so we may applyTheorem 3.2, which says we can efficiently and deterministically find a suitable integer
vectorŷ that satisfiesTheorem 6.1. The algorithm runs in time poly(n,k,d), but sincek = Q·8ln2d and
we only considerQ≤ n, this is poly(n,d).

6.4 Quantum Hypergraph Covers

In this section we define hypergraphs and quantum hypergraphs and discuss the cover problem for both.
The hypergraph cover problem is just the classical set cover problem, and the quantum hypergraph cover
problem is a non-commutative generalization arising in quantum information theory [1]. Our efficient
and useful pessimistic estimators for the integer covering SDP problem immediately give an efficient
deterministic algorithm to find a quantum hypergraph cover that is optimal up to logarithmic factors.

6.4.1 Hypergraphs

Here we will describe the hypergraph cover problem, which is just another name for the classical set
cover. A hypergraph is a pair(V,E) whereE ⊆ 2V , i. e.,E is a collection of subsets ofV. Say|V|= d.
One often views an edgee as a vector in{0,1}d, where thei’th entry is 1 if vertexi is in the edge and 0
otherwise.
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It will actually be convenient for us to viewe∈ E asd× d diagonal matrix with 1 or 0 at each
diagonal entry to signify whether that vertex is in the edge. In this section we will denote the matrix
associated witheas f (e). This representation will naturally generalize to quantum hypergraphs.

A coverof a hypergraphΓ = (V,E) is a set of edgesC such that
⋃

e∈C e= V, i. e., each vertex is in at
least one edge. Note that this definition of cover coincides exactly with the definition of set cover. The
size of the smallest cover is called thecover numberand is denotedc(Γ).

Using the matrix representation ofE, one sees that⋃
e∈C

e= V ⇔ ∑
e∈C

f (e)≥ I

where the second expression uses our usual ordering of matrices.
A fractional coveris an assignmentw : E → R+ of non-negative weights to the edges such that

∑e∈E w(e) f (e)≥ I . Thefractional cover numberis defined as

c̃(Γ) = min
w

{
∑
e∈E

w(e) ∑
e∈E

w(e) f (e)≥ I

}
.

We know that the hypergraph cover problem is hard to approximate up to a lnn factor [10]. From
the definitions, it is clear that this problem is a special case of our integer covering SDP’s. In the next
section we generalize to the non-commutative case.

6.4.2 Quantum Hypergraphs

Ahlswede and Winter [1] definequantum hypergraphsas generalizations of hypergraphs. Recall that
we represented an edge of a hypergraph as ad×d diagonal matrix with 1,0 along the diagonal. So a
hypergraph is equivalent to a pair(V,E) whereV = Cd and eache∈E is identified with a diagonal matrix
f (e) whose diagonal entries are 0 or 1. We generalize this to non-commutative “edges” by allowingE

to contain other operators, i. e.,f (e) can be any Hermitian operator (i. e., matrix) in[0, I ].9

Definition 6.5. A quantum hypergraphis a pairΓ = (V,E) whereV is ad-dimensional Hilbert space
andE is a finite set such that eache∈ E is identified with a Hermitian operatorf (e) ∈ [0, Id].

We define acoverof a quantum hypergraph to be a finite subsetC⊆ E such that∑e∈C f (e)≥ I . The
cover number c(Γ) is the size of the smallest cover ofΓ.

Likewise, we define a fractional cover to be an assignmentw : E → R+ of non-negative weights to
the edges such that∑e∈E w(e) f (e)≥ I , and the fractional cover number as

c̃(Γ) = min
w

{
∑
e∈E

w(e) ∑
e∈E

w(e) f (e)≥ I

}
.

Note that this corresponds exactly to our previous definitions for hypergraphs. The problem of finding
the fractional cover has equivalent forms that are natural and interesting, which are discussed at the end
of this section.

9A complex matrixA is Hermitian (self-adjoint) ifA = A∗ where∗ denotes the conjugate transpose. Here we use the fact
that all our previous results for real symmetric matrices generalize to complex Hermitian matrices.
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It is important to note that the notion of “vertex” is lost because the matricesf (e) ∈ Md are not
necessarily diagonal in a common basis. However, it is again clear from the definitions that a quantum
hypergraph cover problem is just a special case of integer covering SDP’s (extended to complex matri-
ces), so we may useTheorem 6.1to give an efficient deterministic approximation. Thus the theorem
below follows.

Theorem 6.6. Suppose we are given a quantum hypergraphΓ = (V,E) with fractional cover number
c̃(Γ), with dim(V) = d and|E|= n. Then we can find an integer cover ofΓ of size k= c̃(Γ) ·O(logd) in
timepoly(n,d).

6.5 Other Applications

Our integer covering SDP (and its extension to complex matrices) also encompasses two other natural
problems from quantum information theory. Given a functionf : [n] → [0, Id], one may want to find a
probability distributionX over[n] that achieves the optimum of either of the following quantities:

1. minX λ1(EX[ f (X)]) = minX ‖EX[ f (X)]‖,

2. maxX λd(EX[ f (X)]).

The former minimizes the norm of the expected value of the distribution, which is also its largest eigen-
value, while the latter may be viewed as maximizing the lowest energy state of a quantum system, which
is also its smallest eigenvalue. The second can be formulated as a covering SDP by using the cost vector
c = 1 (the all 1’s vector), and then normalizing the solution vectory to be a probability distribution. The
first can be formulated as the second by considering the functionI − f .

In both cases, our pessimistic estimators give an “integral solution” that is worse by at mostO(logd).
In this case, an integral solution is actually a distribution with sparse support; we sample from the
solution distributionX to get a distribution̂X with support of sizeO( 1

γ2 logd) such that the corresponding
objective is worse by at most a factor ofO(logd).
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A Error in [ 33]

Due to the error, the main claim of [33] remains open.

Conjecture A.1. Let f : [N] → [−Id, Id] be a matrix-valued function with expectationE[ f ] = 0. Let G
be an expander graph on[N] with spectral gapε. LetY1, . . . ,Yk be a random walk of lengthk on G (for
sufficiently largek). Then it holds that

Pr
[∥∥∥1

k

k

∑
i=1

f (Yi)
∥∥∥> γ

]
≤ de−Ω(εγ2k) .
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The above statement gives a relatively strong bound; in its weakest non-trivial form, the conjecture
would be that

Pr
[∥∥∥1

k

k

∑
i=1

f (Yi)
∥∥∥> γ

]
≤ poly(d)e−poly(ε,γ)k .

The error in [33] is in the application of the Golden-Thompson inequality (Theorem 2.2). The
following derivation, which appears in the proof of Theorem 3.6 in the second column of page 401
of [33]10, is incorrect:

E

[
Tr
(

exp
(
t

k

∑
i=1

f (Yi)
))]

≤ E

[
Tr
( k

∏
i=1

exp(t f (Yi))
)]

where theYi are the steps in a random expander walk and the expectation is over all walks. This is
incorrect because the Golden-Thompson inequality does not generalize to more than two terms, i. e., the
following does not hold in general for real symmetric matricesA,B,C:

Tr(exp(A+B+C))≤ Tr(exp(A)exp(B)exp(C))

and it is not hard to come up with counterexamples.
We have tried various techniques to bypass this problem, but we have not discovered any method to

get parameters that are sufficient for our applications. In the notation of [33], it would suffice to prove

Tr

(
E
[
exp
(

t
k

∑
i=2

f (Yi)
)

exp(t f (Y1))
])

≤ ‖ÃD̃t‖ ·Tr

(
E
[
exp
(

t
k

∑
i=2

f (Yi)
)])

or even only

Tr

(
E
[
exp
(

t
k

∑
i=1

f (Yi)
)])

≤ d‖ÃD̃t‖k .

We know from the proof of theTheorem 2.4that both of the inequalities hold when the normalized
adjacency matrix of the graph isA= J/n, i. e., we sample from the complete graph with self-loops, which
corresponds to independent sampling. We do not know counterexamples to either of these inequalities
for sampling according to an expander walk. Thus, as far as we know, Theorem 3.6 of [33] may be true
as stated.
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