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of their bound using the method of pessimistic estimators (see Raghavan [JCSS 1988]).
As a consequence, we derandomize an efficient construction by Alon and Roichman [RSA
1994] of an expanding Cayley graph of logarithmic degree on any (possibly non-abelian)
group. This gives an optimal solution to the homomorphism testing problem of Shpilka
and Wigderson [STOC 2004]. We also apply these pessimistic estimators to the problem
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The results above appear as theorems in our paper “A randomness-efficient sampler for
matrix-valued functions and applications” [FOCS 2005, ECCC 2005], as consequences of
the main claim of that paper: a randomness efficient sampler for matrix-valued functions
via expander walks. However, we discovered an error in the proof of that main theorem
(which we briefly describe in the appendix). That claim stating that the expander walk
sampler is good for matrix-valued functions thus remains open. One purpose of the current
paper is to show that the applications in that paper hold despite our inability to prove the
expander walk sampler theorem for matrix-valued functions.

1 Introduction

Chernoff bounds are extremely useful throughout theoretical computer science. Intuitively, they say that
arandom sample approximates the average, with a probability of deviation that goes down exponentially
with the number of samples. Typically we are concerned with real-valued random variables, but recently
several applications have called for large-deviation bounds for matrix-valued random variables. Such a
bound was given by Ahlswede and Winté&} (seeTheorem 2.&andTheorem 2.8or a precise statement

of their bounds).

In particular, the matrix-valued bound seems useful in giving new proofs of probabilistic construc-
tions of expander graph8][and also in the randomized rounding of semidefinite covering problems,
with further applications in quantum information theofy.[

In this paper we use the method of pessimistic estimators, originally formulatéd]jh {o deran-
domize the Chernoff bound o], and in the process derandomize the Alon-Roichman theorem and the
randomized rounding of covering SDP’s.

The results of this paper prove the claimed applications of our previous pafierahd in fact
supersede them in simplicity and efficiency. However, we discovered a fatal mistake in the analysis
of using an expander sampler i83, and it remains open whether the expander sampler achieves the
deviation bound claimed there (or something asymptotically equivalent). For details on the problem
with the previous work, se@ppendixA.

Arora and Kale 4] independently reached results similar to the ones presented in this paper that
imply the applications to constructing expanding Cayley graphs and semidefinite covering programs.

The paper is organized as follows. Section2 we define the linear algebra notation we use and
prove the Chernoff bounds of Ahlswede-Winter, givefiireorem 2.@andTheorem 2.8In Section3 we
review the method of pessimistic estimators and how it is used to derandomize algoritf®estiond
we construct pessimistic estimators for the Ahlswede-Winter Chernoff bounds. Finally we apply these
estimators to derandomize the construction of Cayley expandé&sdtion5 and to derandomize the
rounding of integer covering SDP’s Bection6.

1The simpler method of conditional probabilities was described earlier in the first editi@®]oflfleas similar to those
of [24] also appeared irn].
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2 Matrix-valued random variables and the Chernoff bound of Alhswede
and Winter

We will work with the setMy of real symmetria x d matrices? We letly denote the identity matrix in
Mg, and will write simplyl when the dimension is clear. For aAye My we letA1(A) > ... > A4(A)
denote the eigenvalues Afin non-increasing order. Recall that every mafig My has an orthonormal
eigenbasis.

We will measure distance between matrices using the operator norm

I|A]] = max|||‘|| miax|)Li (A)].
We will also frequently use the trace, () = S9; Ai(A). It is well-known that for any orthonormal
basisvy, ...,vq € RY we have that TiA) = T4, (vi,Av), where(-,-) denotes the usual inner product
overRY,

We say that a matriA € My is positive semidefinite (p.s.d.) if all its eigenvalues are non-negative.
We will use the fact thaf is p.s.d. iff for allv € RY, (v,Av) > 0. We letA > 0 denote thaf\is p.s.d. We
use the ordering of symmetric matrices given by this definition, naetyB iff B— A > 0. For two
matricesA < B, we will let [A, B] denote the set of all symmetric matric@such thath < C andC < B.

We will work with the matrix exponential, which is defined by

exp(A) ﬁ ?f .

Recall that the matrix exponential is convergent for all matrices. Furthermore, it is not hard to see for
A € My that an eigenbasis d is also an eigenbasis of e and thati; (exp(A)) = 4 for all
1<i<d. Also, for all A € Mg, it holds that expA) > 0.

We will consider matrix-valued random variables of the following form. Weflefn] — [—Iq, l4],
where[n] = {1,...,n}. Let X be a distribution (not necessarily uniform) oel, and consider the
variable f (X). This is a natural extension of bounded discrete random variables over the reals, which
may be thought of as functioris: [n] — [—1,1]. We will let the expectation of (X) be the obvious
thing: E[f(X)] = 3L, PrX =] f(i). Note that because Tr is lined,and Tr commuteE[Tr(f(X))] =
Tr(E[f(X)]). We let suppX) denote the set of all values of that occur with non-zero probability.
When we say that something holds for a random variabl@ways we mean that it holds for every
element in sup{X).

We will use the following useful facts several times:

Fact 2.1. If A/B € My andB > 0, then T(AB) < ||A|| - Tr(B).

Proof. Let vi,...,vy be the orthonormal eigenbasis &f with corresponding eigenvaluds = 4;(A).

Then we may write
d

Tr(AB) = Z (vi,ABY) = Zl/l, (vi,Bv) .

2All our results extend to complex Hermitian matrices, or abstractly to self-adjoint operators over any Hilbert space where
the operations of addition, multiplication, trace, exponential, and norm are efficiently computable.

THEORY OF COMPUTING, Volume 4 (2008), pp. 53-76 55


http://dx.doi.org/10.4086/toc

A. WIGDERSON ANDD. XIAO

SinceB > 0 we know thatv;,Bv) > 0, so we get

Tr(AB) < -imja)dj (vi,Bv) < ||A||-Tr(B).

Theorem 2.2 (Golden-Thompson inequality, 12, 31]). For A, B € My, we have
Tr(exp(A+B)) < Tr(exp(A)exp(B)) .

The proof of this is outside the scope of this paper.
Ahlswede and Winter introduce a generalization of Markov’s inequality for matrix-valued random
variables.

Theorem 2.3 (Markov’s inequality [1]). For anyy > 0, any function g [n] — Mg such that gx) >0
for all x € [n], and for any random variable X ovém], we have

Prig(X) £ 1] < 3Tr(E[g(X)]).

Proof.
Prig(X) £ 7] = Prllg(X)[| > 7] < Z Elllg(X)1].
Sinceg(X) > 0 always, we havég(X)|| < Tr(g(X)) always, so we get:

< LE[Tr(g(X))] = LTr(E[g(X))).
O]

The following Theorem 2.4s the main theorem provind]s Chernoff-type bound. We will use
Theorem 2.4which holds for all distributions, to derive two corollari@hgeorem 2.&ndTheorem 2.8
which hold for more specific kinds of distributions. In addition, the prooTbéorem 2.4will give us
the pessimistic estimators corresponding to the two corollaries.

Theorem 2.4 ([]). Suppose f [n] — [—Ig,lq] and let X,..., X be arbitrary independent random
variables distributed oven]. Then for ally € R:

k
Pr Z (%) £ 11| < de I‘lH]E exp(tf (X))

Proof. The proof begins analogously to the real-valued case, generalizing the classical Bernstein trick.
We first multiply by an optimization constant> 0 and exponentiate to obtain

k

Pt 3106 2] =Prlens(t 3 106)) £
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The equality holds because for aAye My, o € R, the statemenf £ al is equivalent to saying
some eigenvalue dh is larger thana, which is the same as saying that some eigenvalue affexp
larger thane®, which in turn is equivalent to exp) £ e*1. Then the following inequality is a direct
consequence afheorem 2.3ince expA) > 0 for all A € M.

[&i (Xj) & yl} < e Ty (E[exp(t Jﬁ;‘(xﬂ)}) : (2.1)

Then we applyFact 2.1and the Golden-Thompson Inequalititeorem 2.20 bound the expression
in a manageable form. This step will be expressed in the following lemma.

Lemma 2.5. For any matrix Ac My, any f: [n] — Mq and any random variable X ovén], we have
Tr(Ex [exp(A+ f(X))]) < ||E[exp(f(X))]|| - Tr(exp(A)).

To obtainTheorem 2.4we simply apphLemma 2.50 Inequality @.1) repeatedly:

e

Tr <Exk [exp( Z f(Xj) +tf(Xk)>D] (By independence)

.....

~

-1

<eRE, [H]E[exp(tf(xk))] |- e (exe(t f(xj)))] (ApplyLemma 2.5

;l\—._
P

_ e—tkaE[eXp(tf(xk))] H Tr <EX17~-~,xkl [exp( f(xJ))D (Put expectation back inside)

=1

k
< etk I_U|E[exp(tf(xj))] |- Tr(1) (Repeat k times . ...)
J:
k
=de 'k I‘U]E[exp(tf(x,-))] |- (2.2)
=
This completes the proof moduleemma 2.5 O

Proof ofLemma 2.5

Tr(Elexp(A+ f(X))]) = E[Tr(exp(A+ f(X)))] (Since trace and expectation commute)
< E[Tr(exp(f (X)) exp(A))] (Applying the Golden-Thompson inequality)
< Tr(Elexp(f (X ))] exp(A)) (Commuting trace and expectation again)
< || Elexp(tf(X))]|| - Tr(exp(A)) . (ByFact 2.

O
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Now we will draw two corollaries from this main theorem. These two corollaries are useful in
different settings; the first guarantees that the probability of an additive deviation is small, while the
second that of a multiplicative deviation.

Theorem 2.6 ([]). Let f:[n] — [—Ig,lq]. Let X be distributed oveln] with Ex[f(X)] =0, and let
X1,..., % be i.i.d. copies of X. Then for all> y > 0:3

Pr{ﬁéf(xi) i yl} < de 74,

Note that the other directio,bz!‘:1 f(X) 2 —yl holds with the same bound by considering.

Proof. We require onlyTheorem 2.4and a simple claim. Because all theare i.i.d. Theorem 2.4jives
us

Pi 3, 100 2] < de P sienr 0

We use the following claim to bound the RHS.

Claim 2.7. ||E[exp(t f (X))]|| < 1+t?fort < 1/2.
Proof. This follows from the Taylor expansion of exp:

|E[exp(tf(X))|| = |[E[l +tf(X)+ (tF(X))2/2+.. ]|
=H'+tE[f<X>]+E[< F(X))2/24..]||.

SinceE[f(X)] = 0, applying the triangle inequality, and usifi§(X)|| < 1 always, we have

§1+/itf/£!.

Sincet = y/2 < 1/2 this gives
< 1+t2.

O]

3For the sake of simplicity, no attempt was made to optimize the constant in the exponent of the bound in this analysis. To
get a tighter bound, we can apply the analysislptd get a bound of

de0(F113)
HereD(p||q) = p(logp—logQq) + (1— p)(log(1— p) —log(1—Qq)) is the relative entropy function, and using the approximation

D((1+7)/2]|1/2) > ¥?/(2In2), which can be shown by looking at the Taylor expansioBf|-), we have the improved bound
of de K7/ (2In2).
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We will chooset = y/2 < 1/2, so we may applgZlaim 2.7to Theorem 2.40 get

k
Pr[&_zf(m 27| < de k(142K
i=
< etttk (Using1+x < e for all x € R)
<de 74, (Choosing t= y/2)
]

Theorem 2.8 (fL]). Let f: [n] — [0, l4]. Let X be distributed oven], with M= Ex [ f(X)] > ul for some
u € (0,1). LetX,...,X bei.i.d. copies of X. Then we have, for pk [0,1/2],

[ Zlf (1— y,ul} < de THk/(2In2)

Proof. We can assume without loss of generality thb& ul.* Because the direction of this bound is
the opposite of what we proved irheorem 2.4we will work with | — f to get:

x~

[glf A-pul| =Prid 30— (X)) £ (1~ A-w) . (2.3)

Applying Theorem 2.4

< de t @Mk | Blexp(t(1 — £(X)))] || (2.4)

— d|[Elexp(—tf (X)) X4 ||, (2.5)

This last quantity was analyzed in the proof of Theorem 191ffWith the following conclusion

which we state without proof:

Claim 2.9 ([1]). Fort = log(*-{-2¢ %), we have

[Efexp(—t f(X))|e¢dM1|| < g 7u/@n2)

Applying this claim tolnequality @.5) gives us the theorem. O

3 Method of pessimistic estimators

First we review the method of pessimistic estimators, due to RaghadhrThe setting is the following:
we have a random variab} and we know that with some non-zero probability an evefX) occurs,
i.e., Pfo(X)=1] >0, whereo : supgX) — {0,1}, o(x) = 1iff xis in the event. We wish to efficiently
and deterministically find a particulare supgX) such thato(x) = 1.

4If not, we could work withg(x) = uM~1/2f (x)M~1/2 instead.
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Our application of pessimistic estimators is to derandomizing probabilistic algorithms. In particular,
suppose we have a randomized algorithm that constructs an object, and with some non-zero probability
that object satisfies some property. Thus, our ewei#t the event that the object satisfies the property,
and our goal is to deterministically and efficiently find the object. In this paper our two main applications
are to deterministically and efficiently find a small generating set of a group that satisfies expansion, and
to find an integer solution to a SDP covering problem that satisfies feasibility and some approximation
guarantee. Both problems were previously known to have randomized algorithms, and we use our
pessimistic estimators to derandomize these algorithms.

We will only be concerned with random variables with finite state space with a product structure, and
we will sub-divide the variable into many parts. Thus we use the notXtimndenote a random variable
wherew.l.o.g.supr{)?) C [n]* for somek, n € N (these will be chosen according to the application). Let
X = (Xg,...,%), where eactx;  [n]. To find a “good” setting oK, we will iteratively find settings of
X1, thenX,, and so forth until we have a complete setting?of

By the definition of expectation

Prlo(X) = 0] = Ex, [Pr[o(i) —0| xl]} .

X

Now by averaging there must exist at least one setting [n] of X; such that
Prlo(X) =0| X =x1] < Ex, [Pr[o(i) —0| xl]] .

We setX; = X1, and then repeat the same reasoningdgr.., Xx. Let us denote the resulting setting
of X by X. Thus at the end we have [BrX) = 0] < Pic(X) = 0]. But note that we supposed that
Prio(X) = 0] < 1, and since& is afixedvector, it must be that s (X) = 0] = 0 and therefores (X) = 1.
The difficulty with turning this into an algorithm is in calculating the probabilities, for eagh ¥ k
and,Vxy,...,X € [n]
Pr [c(X)=0|Xi=Xg,...,% =X
xi+17~~~,xk[ (X) =0[ Xy =Xq,..., X = X]
since they may not be efficiently computable. Fortunately we may relax the requirements slightly by the
following.®

Definition 3.1. Let ¢ : [k — {0,1} be an event on a random variabfedistributed overn]k and
suppose R (X) = 1] > 0. We say thaty, ..., ¢k, ¢ : [N — [0,1] (heredy is just a number ir0, 1)),
arepessimistic estimatorfer ¢ if the following hold.

1. For anyi and any fixedq,...,X € [n], we have that

PrXk[a(xl,...,x;,XiH,...,Xk) =0l < di(Xgy---y%)-

50ur definition is stronger than the standard definition of pessimistic estimators, in that in the second condition usually all
that is required is for aky, ..., X € [n], there exist;, 1 € [n] such thai; 1 1(X1,...,Xi+1) < ¢i(X1,...,%). But our estimators
satisfy the stronger definition and we will find it useful, especially when composing estimatots(se® 3.3.
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2. For anyi and any fixedsq, ..., X € [n]:

Ex,, Oir1(X1, ..., X, Xig1) < 0i(Xe,..., %)

We will also want the pessimistic estimators todfgcient namely eacly; is efficiently computable,
andusefu) which meansg) < 1. This last condition is becaugg is a bound on the initial probability of
failure, which we need to be strictly less than 1.

Theorem 3.2 (R4)). If there exist efficient and useful pessimistic estimatggs. . ., ¢«) for an evento,
then one can efficiently computdixed X € [n]* such thato (X) = 1.

Proof. We pickxy,...,x one by one. At step 0 we hayg < 1 since the estimators are useful.
At stepi, we havex, ..., already fixed. Enumerate over, 1 € [n] and choose the value such that
Gir1(Xa,- -, Xir1) < @i(Xq,...,%) < 1. We are guaranteed that

Exa (910X, %, Xi1)] < Gi(Xe, ..., %)

by Property2 of Definition 3.1, and so by averaging there must exist a fixed € [n] that is at most the
expectation on the LHS of the above inequality. We can compute the value of the estimator efficiently
by hypothesis.

Finally, we have aftek steps thapy(X) < 1 and byPropertyl we have that B (X) = 0] < ¢«(X) < 1,
and thereforey (X) = 1.

The algorithm runs througksteps, and each step is efficient, so the overall algorithm is efficiént.

We will find it useful to compose estimators, which is possible from the following lemma.
Lemma 3.3. Suppose, 7 : [k — {0,1} are events oX, which is distributed oven]. Suppose that
(¢o,---,), (Wo,..., W) are pessimistic estimators for, T respectively. Thefpo+ o, ..., o+ Wk) are
pessimistic estimators for the evenn 7.

Proof. We need to verify the properties Diefinition 3.1

1. This is verified by a union bound:

Pri(cNt)(X1,..., %, Xi+1,..., %) = 0]
S Pr[G(Xl,---,Xi,)<i+1,---,xk) :O]+Pr[T(Xl>"'aXi7Xi+17"'7Xk> :0]
< (O + i) (X, %)

2. This is immediate from linearity of expectation.
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4 Applying pessimistic estimators to the AW bound

The method of pessimistic estimators extends to the AW Chernoff bound. We will first describe pes-
simistic estimators forheorem 2.@nd then foilTheorem 2.8 They are essentially identical except for

the difference in distributions in the two settings, and the proofs that the pessimistic estimators satisfy
Definition3.1rely mainly onLemma 2.5 In both cases, they allow us to efficiently and deterministically
find settings«s, . .. ,X¢ such that bad event bounded Biyeorem 2.Gresp.Theorem 2.8does not occur.

Theorem 4.1. Let f: [n] — [—lg,lq]. Let X be distributed oven] with Ex[f (X)] =0, and let X, ..., X«
be i.i.d. copies of X. FiL > vy > 0. Lett= y/2. Suppose thdk[exp(t f (X))] is efficiently computable.

Combining the notation ddection2 and Section3, we letX = (Xy,...,Xc) with X € [n] and we let
o : [ — {0,1} be the events(X) = 1if 7, f(x) < ¥l and &(X) = 0 otherwise. Then the following
(do,...,0), ¢ : [N]' — [0,1] are efficient pessimistic estimatofsr o:

9o =de | [Elexp(tf (X))] || (which is at most de”™/%),
0%, x) =de T (exp(ti f(x»)) [Erexpi o)
j=1

Proof. We verify the properties dbefinition 3.1
1. FromlInequality @.1):
k

Pr[ﬁ,zlf(xi) 4 }/I} < de Ty (E[exp(tif(xj))D

i k
< de Ty (E[exp(t > f(xj>>}> T IEtexae ()] .

By fixing X; = x; for all j <i, we derive that
k

Pr[&_zwm L9 X =%, % = x| < de Ty (exp(t JZf(x;))) || Elexpit £ (X))

1=
= (Pi(Xl,...,Xi) .
2. We use the following derivation, where the inequality follows frobemma 2.5
EXHl [¢i+1(le co X XH-l)]
[

= de " Tr (Eml [eXp(t > fx) +tf(Xa+1))D IE(exp(t f(X)))|< -1

j=1
de S 100)) ) FoO))|
< de Tr(exp(t 3 (m))) = (exp(tf (X))

= (X1,...,%).
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To see that they; are efficiently computable, we will specify the input to the algorithm as a function
f (which we assume is given as a list @f d matricesf(1),..., f(n)) and ¥. Thus we desire the
algorithm to be computable in time pdly d,k). We require multiplication, addition, trace, matrix
exponential, and norm computations. The first three are obviously efficient; the last two are efficient
because eigenvalues ofla< d matrix can be computed (and hence it can be diagonalized thus making
the exponential and norm computations trivial)d0d®) numerical operationslp]. On a machine with
finite precision, we can truncate the estimators to a sufficiently fine resolution so that the truncated
estimators behave essentially as the real-valued estimators do. O

Theorem 4.Jives us pessimistic estimatdi®, . . ., ¢) for o, and the same proof gives efficient pes-
simistic estimatorgyy, ..., y) for the eventr(X) = 1 iff %z}‘zl f(x) > —vl by applyingTheorem 2.6
to — f. Combining these with thé, gives us the following.

Corollary 4.2. Let f: [n] — [—Ig,lq4]. Let X be distributed oven| with Ex|[f(X)] =0, and let X, ..., Xk
be i.i.d. copies of X. Fid > y> 0 and fix t= y/2. Suppose thaE[exp(tf(X))] andE[exp(—t f(X))]
are efficiently computable.

Letn : [Nk — {0,1} be the eveny(X) = 1 if ||%2=(:1 f(x)| <y andn(X) =0 otherwise. Then
(do+ vo,. .., Pk + W) are efficient pessimistic estimators fipr

Proof. Note thatn = o N 7. Efficiency is clear. We can applyemma 3.30 get that(¢o + yo, ..., ¢k +
Yk) is a pessimistic estimator for the evenpt= o N 7. O

This allows us to derandomizéheorem 2.@fficiently. Notice that in general the only property>of
that we need is to be able to compifexp(t f (X))] andE[exp(—t f (X))].8 This is of course true when
X is uniform, or when we can efficiently compute[R= x| for eachx € [n]. The actual distribution is
irrelevant, since we exhaustively search through the entire space for the choice &f.each

Theorem 4.3. Let f: [n] — [—lqg,lgq) be such that there exists a distribution X ovaf such that
E[f(X)] = 0. Then for k= O(V—l2 logd), we can efficiently and deterministically fiids [n]% such that

lesia fx)l <.

Proof. Use the efficient pessimistic estimatorsdafrollary 4.2 Pickk = O(y—l2 logd) such thatyo+ yp <
1 and so that the estimators are useful. We may then apgmprem 3.2o get the result. O

We can construct pessimistic estimatorsTaeorem 2.8n the same way.

Theorem 4.4. Let f: [n] — [0,14]. Let X be distributed oveln], with M = Ex[f(X)] > ul for some
we(0,1). LetX,..., X be i.i.d. copies of X. Fix

(M )

®In fact this is only necessary because we want a two-sided guarantee; $fe,, f(X) < vl and § 5, f(X) > 1.
It is not necessary if we only require a one-sided guarantee, such as in the seffihgooém 4.4 where we only want
%z!‘zl f(X) > (1—1y)ul. In this second setting, when picking to minimize ¢;, notice that the quantityfE[exp(t f (X))]||
does not change with different choices)¢f so the only part we need to compute is the trace part, which does depend on the
choice ofX;. Thus it suffices to compute the choiceXfthat minimizes the trace part of tije
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LetX = (Xa,..., %) with X € [n] and we lefo : [n]* — {0, 1} be the events (%) = 1if § 31, f(x) >
(1—17y)ul and o(X) = 0 otherwise. Then the followin@po,..., ), i : [n]' — [0,1] are efficient pes-
simistic estimators foo:

9o =de- 7k |E[exp(—t £ (X))] || (which is at most de”#k/(21n2))
$i(Xe,...,x) =dekL-VHTY (exp(—t JZf(m)) [ Elexp(—tF X))

Proof. The proof follows exactly along the lines ®heorem 4.1 O

Theorem 4.5. Let f: [n] — [0,l4] be such that there exists a distribution X oyef and a number
u € (0,1) such thatE[f(X)] > ul. Then for k= O(ﬁlogd), we can efficiently and deterministically

findx € [n¥ such that{ 35, f(x) > (1—7y)ul.

Proof. Use the efficient pessimistic estimatorsidieorem 4.4and notice for our choice éfthatgo < 1
so they are useful. Then appieorem 3.2 O

5 O(logn) expanding generators for any group

Our main application is a complete derandomization of the Alon-Roichi8jath¢orem, which states

that a certain kind of expander graph may be constructed by random sampling (details below). Expander
graphs have a central role in theoretical computer science, especially in but not limited to the study of
derandomization. Indeed, they have found a large number of applications in a variety of areas such as
deterministic amplificationd, 18], security amplification in cryptography{]], hardness of approxima-

tion [5, 2], extractor construction (e.g. see surve33 [L3, 25]), construction of efficient error-correcting

codes B0, 8], construction ok-biased space2p] and much more. Sed¥] for a comprehensive survey.

We derandomize the proof of the Alon-Roichman theorem given2by (see also 21]) to give a
deterministic and efficient construction of the expanding generating set. We show how it implies an
optimal solution to a problem of Shpilka and Wigders@sg][(see also 15]), significantly improving
their results.

5.1 Definitions

Given an undirected-regular grapl = (V, E) onn vertices, we define its normalized adjacency matrix
A by settingA;; = &;/d whereg;j is the number of edges between verticasd j (we allow self-loops
and multiple edges). The matriis real and symmetric.

We assumeG is connected. It is well known that the set of eigenvaluesAdé of the form
1=0(A) > A2(A) > ... > A (A). (The strict separation betwedn(A) andA,(A) follows from con-
nectivity.) The eigenvalues @ are the eigenvalues & Note that 1 is an eigenvalue of multiplicity 1,
and with corresponding eigenvectot= [1/./n,...,1/4/n]T. The orthogonal projection to the subspace
spanned by the eigenvectois given by the matrixJ/n, wherelJ is the all 1's matrix.

The Cayley graph Cd¥i;S) on a groupH with respect to the generating multi-s&t_ H is the
graph whose vertex setl$, and wherén andh’ are connected by an edge if there ex&stsS such that
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H = hs(allowing for multiple edges for multiple elements$h We requireSto be symmetric, namely

for eachs € S we also have ! € S(this is to make the graph undirected). RdiCay(H;S)) denote the

second-largest eigenvalue (in absolute value) of the normalized adjacency matrix of the Cayley graph.
Our goal is to design an algorithm that, for a fixget 1, takes as input the multiplication table of a

groupH of ordern and efficiently constructs a small generatingSstich thatA (Cay(H;S)) < y. This

is given by the following theorem.

Theorem 5.1. Fix y < 1. Then there exists an algorithm running in timpely(n) that, given a group H
of order n, constructs a symmetric seC3H of size|S = O(y—l2 logn) such thatA (Cay(H;S)) < 7.

We prove this after presenting the randomized algorithm.

5.2 Arandomized algorithm

Theorem 5.2 (B, 20, 21]). Fix 0 < y < 1, and let H be a group of order n. Identify H with]. Let
Xi,..., Xk be chosen randomly in H, where:kO(Y—l2 logn). We let the multi-set S &y, ..., Xx), and
we have

Pr[A(Cay(H;SU s >y<1

where $1S! denotes the symmetric closure of S, namely the number of occurrences of stand s
SUS 1 equals the number of occurrences of sin S.

To identify the notation in the following proof precisely with that used®ectiond, we have that
corresponds t&, |S = k, and it will become clear that in this setting thet d = |H]|.

Proof. Consider then x n matricesh, for h € H, where each, is then x n permutation matrix of the
action ofh by right multiplication. Consider nO\é(F’h +B,-1). Itis not hard to see that the normalized
adjacency matriXA of Cay(H; SUS™1) is given by

1 < 1

We wish to boundt (A). We know that the largest eigenvalue is 1 and correspondiatahere] is
the all 1 matrix. Since we want to analyze the second-largest eigenvalue, we consider

k

(1= 3/MA=E 3 (1 -3/my(R B,

We let our matrix-valued function bih) = (I — J/n)%(ﬂ1 +Ph-1), so that

AA) = |1 =3/m)A|| = H;Zklfoq)H.

It is straightforward to verify thaf (h) € M,

f(h)]| < 1 andEnen [ f(h)] = O.
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Thus we may applyrheorem 2.80 get that

k
PHA(A) > 7] =Pr| |2 S f(X)|| > 7 (5.1)
e 3 1007
S Zne*yz‘ﬂ/“'
S0 pickingk = O(y—l2 logn) suffices to make this probability less than 1. O

5.3 Derandomizing

Proof of Theorem 5.1 To derandomize and obtairheorem 5.1we applyCorollary 4.2to obtain effi-

cient pessimistic estimators for the ever(tS) = 1 iff || £ KL < 7y. We fixk= O(y—l2 logn) large
enough such that the probability of this event is non-zero (i. e., the estimators we got are useful). We
then applyTheorem 3.2o greedily choose successive elementkli db be put inSin order to make an
expander. O

5.4 Derandomized homomorphism testing

Theorem 5.Janswers a question about the derandomization of affine homomorphism testers posed by
Shpilka and Wigdersor2f]. In this section we will us@ heorem 5.1o proveCorollary 5.4

An affine homomorphisrnetween two groupsi,H’ is a mapf : H — H’ such thatf ~1(0)f is a
homomorphism. Ar{d,n)-test for affine homomorphisms is a tester that accepts any affine homomor-
phism surely and rejects with probability-16 any f : H — H’ which isn far from being an affine homo-
morphism. Here distance is measured by the normalized Hamming distHricg) = Pr{ f(x) # g(X)],
where the probability is overchosen uniformly fronH.

Shpilka and Wigdersor2B] showed how to construct a test@y s efficiently using an expander
Cay(H;S) whereA (Cay(H;S)) < A: simply pick a random elemente H and a random elemegitc S
and check to see thdt(0) f(x)~1f(xy) = f(y). Itis clear this test accepts surely if f is an affine
homomorphism. 28] shows that if 13 < 1 — A then this rejects with probability 2 6 any f that is
46 /(1— A)-far from being an affine homomorphism.

Theorem 5.3 (R§]). For all groups HH’ and SC H an expanding generating set such that
A(Cay(H;S)) < A, we can construct a testeryIs that surely accepts any affine homomorphism
f : H — H’ and rejects with probability at least— 6 any f: H — H’ which is45/(1— A1) far from
being an affine homomorphism, given tha6/(1—-A) < 1. Thatis, Fixsis a(6,46/(1—A))-test for
affine homomorphisms.

In [28] the deterministic construction & gave a set of sizéH |¢ for arbitrarye > 0. The explicit
construction given inZ8] requires thatl s use (1+ €)log|H| random bits and asks whether it is
possible to improve this dependency on randomndsseorem 5.1allows us indeed to improve this
dependency to the following.

Corollary 5.4. Given an arbitrary group H, one can construct in tift¢| 1) an affine homomorphism
tester for functions on H which uses oifibg |H | +loglog|H| + O(1) random bits.
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Proof ofCorollary 5.4 Theorem 5.3ays we can construct a homomorphism tester that only uses ran-
domness to pick an element Hf and an element of an expanding generating seéi.offTheorem 5.1
implies this only requires lodH | +loglog|H |+ O(1) random bits since we can deterministically con-
struct an expanding generating set of size{kblgin polynomial time. O

6 Covering SDP’s

Linear programming (LP) was one of the first tools computer scientists used to approXmuzrd
problems. As a natural relaxation of integer programming (IP), linear programs give fractional solutions
to an IP, which may then be rounded to give provably good solutions to the original IP.

More recently, a more general class of relaxatigespidefinite program@&DP’s), have been used by
computer scientists (e.gl], 6]) to give better approximation guaranteedNiB-hard problems. SDP’s
may be solved in polynomial time (using e.g. the ellipsoid method or interior-point methodf6see |
27, 35, 32)), and again the solution may be rounded to give a solution to the original IP.

In this section we will define a restricted class of integer SDP’s and show that our pessimistic esti-
mators will give a good approximation guarantee.

6.1 Definition

We define the notion ointeger covering SDP;swhich are generalizations of integer covering linear
programs (see e.glf]). These programs take the following form: gives [0,1]" andf : [n] — [0,14],”
findy € N" where

minimizec'y

6.1
with feasibility constrainys f (1) +... +ynf(n) > 1 1)

where the feasibility inequality uses the p.s.d. ordering. The vectay be interpreted as a cost vector,

and we wish to minimize the cost of a solutipre N". This is relaxed into a covering SDP by allowing

y € R whereR . denotes the non-negative reals, which we would then like to round to a sopidr

that is not too much more costly. We will IPT denote the optimal value of thielaxedcovering SDP.
Our main theorem is as follows:

Theorem 6.1. Suppose we have a program agsquation(6.1) and suppose we have a feasible relaxed
solution vector y= R} . Then we can find in timgoly(n, d) a feasible integer solutiofi such that

c'y < O(logd)-cTy.

Corollary 6.2. Given an integer covering SDP with optimum OPT, we can efficiently find an integer
solution with cost at most @gd) - OPT.

This is done by using a randomized rounding algorithm given implicithi]ndnd then derandom-
izing using pessimistic estimators.

"We restrict ourself to this scale for simplicity. Our results apply to any bounded function with a constant loss in efficiency.
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Also, note that this is a natural generalization of integer covering linear programs of the following
form: for a cost vectoc € R, a matrixA € R"

minimizec'y
subject to feasibility constraints that for ak [d]: (Ay); > 1.

This may be viewed as the special case of integer covering SDP’s where all the matrices are diagonal;
eachf (i) is just the diagonal matrix withth column of A along the diagonal. Integer covering LP’s, in
turn, are a generalization of the very familiar set cover problem, which are exactly the programs where
the columns ofA are either O or 1. In the language of set cover, the univerise &d the columns oA
are the indicator vectors for the sets we may use to coyer

Our approximation for integer covering SDP’s will imply a new approximation algorithm for all
these covering problems with a logarithmic approximation guarantee. Thus in a sense our algorithm
gives optimal approximation factors (up to constants), since a logarithmic approximation factor is opti-
mal (up to constant factors) assuming tRag NP, as shown byJ0]. This connection is discussed in
more detail inSection6.4.1

6.2 A randomized rounding algorithm

First suppose we have a solution to the SDP given by a vgetdR" , and let us defin® = ZT: yj. In
the case wher® > n, we can get a trivial deterministic rounding scheme with approximation factor 2
by always rounding up, since this will increase the value of the program at most by an addifives
in the following we consider only programs whepe< n.

Suppose we have a program a&iuation 6.1) and we have solved it efficiently to obtain a solution
y, wherec"y = OPT. Let X be distributed according to the distribution oyergiven by normalizingy,
i.e.,

PrIX =i]=vi/Q.

Note that, becausgis a feasible solution, we haw&[f(X)] > %I. It was implicitly shown in ] that
samplingk = Q- O(logd) elements fronmin| according to the distributioX and takingf (X;) (1 <i <K)
gives us a feasible solution with approximation fadglogd). We state this formally:

Theorem 6.3 ([L]). Suppose we sample=k Q- 8In2d times from[n] according to X in order to get
X1,...,X. Furthermore, for eaci < j < n, we define the random variables

Vi=Hi|X=i},

the number of times that j is sampled, andYet (Yy,...,Y,).8 Then, with non-zero probability, we
have that )
f(X)+ (X)) +... + F(X) > and dY<c'y-16Ina.

Proof. We will use a union bound to show that the probability that either

Y f(X) 21 or c'Y>cly-16Ind
]

8Notice thaty [, f(X) = 37, Y f(j).
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occurs is strictly less than 1.
All expectations below are over th¢ (since theY; are totally determined by thg).

~
~

Pr[ f(x,-);_sl} :Pr[% f(x,-);g%l]. (6.2)

1 =1

We know from the fact thag is feasible thak|[f (X)] > él , and so fok > 2Q we get:

|].

=~

k
pr[lzlf(xj)zl}gPr[ﬁ F(X)) #

=1

NI
Ol

Invoking Theorem 2.8we obtain

~

Pr[ £(X)) 2 |} < de W6,
1

Therefore if we takd = Q- 8In2d with probability greater than/2 we havey ; f(Xj) > I.
For the second event it is easy to see tat = z‘j;lcxj. Furthermore, a simple calculation shows
that for eachj, E[cx,] = cTy/Q. Thus, by Markov we have:

k
Prc™Y > cTy-16Ind] = Pr [Z cx, > c'y-16In 2d]
=1

E[3_ 1cx]

cTy-16In2d
_ kcy/Q
- cTy-16InAd’

(6.3)

Expandingk = Q- 8In2d shows that this last expression is at mo&2.1
Thus each bad event happens with probability less th@n dnd so the probability that either bad
event happens is strictly less than 1. O

6.3 Derandomizing

Derandomizing is a simple proposition. Given a program, first solve it using a standard efficient tech-
nique (R6, 27, 39, for a survey seed?]), with solutiony andQ = Z?:lyj. Letk=Q-8In2d. In the
proof of Theorem 6.3t Inequality €.2), we can applyrheorem 4.40 get pessimistic estimatogs for
the eventz'j‘:1 f(X;) > 1, which we callo. We only need now a pessimistic estimatgeg, ..., yi) for
the event of the solution not being too costly, which we call
We definey; : [n]' — [0, 1] as follows:

_ 310 + (k—i) E[cx]

]l/i(Xl,..-,Xi) CTy.16|n2d
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Itis clear that thay; are efficiently computable. They satisfy the propertieBefinition 3.1 This is
easy to see, since thg are exactly the expressions given by a Markov bound on the eyamd such
expressions always satisBefinition 3.1 We write this out explicitly here for completeness.

1. By an application of Markov (this is the same asnequality 6.3)), we see:

zij:lcxj + (k—1i) E[cx]
c'y-16Ind

k
Pri sy cx > c'y-16Ind
=1

X1=X1,.., X :Xi] <
=y(X1,...,%).
2. For estimators based on Markov, we actually have equality for this property.

Zijzlcxj +Cxq T (k_ i — l) E[CX]

]EXHI [II/H-I(XJ.) ST XH-l)] = ]EXH]_

c'y-16Inx
B Y1 Cx; + (k—i) Efcx]
N cTy-16In

=YXy %)

Theorem 6.4. Sincego + yo < 1 because of the choice 0tkQ-8In2d, we may invokeemma 3.30 get
that (¢o + o, ..., ok + Wk) are efficient and useful pessimistic estimators for the evehih@orem 6.3

Finally we may provel'heorem 6.1

Proof of Theorem 6.1 By Theorem 6.4ve have pessimistic estimators for the everiiliworem 6.3and
so we may applif heorem 3.2which says we can efficiently and deterministically find a suitable integer
vectory'that satisfie§heorem 6.1 The algorithm runs in time poin, k,d), but sincek = Q- 8In2d and
we only consideQ < n, this is poly(n,d). O

6.4 Quantum Hypergraph Covers

In this section we define hypergraphs and quantum hypergraphs and discuss the cover problem for both.
The hypergraph cover problem is just the classical set cover problem, and the quantum hypergraph cover
problem is a non-commutative generalization arising in quantum information th&or@{r efficient

and useful pessimistic estimators for the integer covering SDP problem immediately give an efficient
deterministic algorithm to find a quantum hypergraph cover that is optimal up to logarithmic factors.

6.4.1 Hypergraphs

Here we will describe the hypergraph cover problem, which is just another name for the classical set
cover. A hypergraph is a pai¥,E) whereE C 2V, i.e.,E is a collection of subsets &f. Say|V| = d.

One often views an edgeas a vector i{0,1}9, where the'th entry is 1 if vertexi is in the edge and 0
otherwise.
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It will actually be convenient for us to view € E asd x d diagonal matrix with 1 or O at each
diagonal entry to signify whether that vertex is in the edge. In this section we will denote the matrix
associated witle as f (e). This representation will naturally generalize to quantum hypergraphs.

A coverof a hypergrapl = (V,E) is a set of edgeS such that J..ce=V, i.e., each vertex is in at
least one edge. Note that this definition of cover coincides exactly with the definition of set cover. The
size of the smallest cover is called tb@ver numbegand is denoted(I").

Using the matrix representation Bf one sees that

Je=v = ch(e)zl

ecC

where the second expression uses our usual ordering of matrices.
A fractional coveris an assignmeny : E — R, of non-negative weights to the edges such that
Y eceW(€) f(€) > |. Thefractional cover numbeis defined as

&) = van{ EEw(e) Z;w(e)f(e) > I} .

We know that the hypergraph cover problem is hard to approximate up to fadtor [L0]. From
the definitions, it is clear that this problem is a special case of our integer covering SDP’s. In the next
section we generalize to the non-commutative case.

6.4.2 Quantum Hypergraphs

Ahlswede and Winter]] define quantum hypergraphas generalizations of hypergraphs. Recall that
we represented an edge of a hypergraph dsca diagonal matrix with 10 along the diagonal. So a
hypergraph is equivalent to a p&W, &) whereV = CY and eacte < € is identified with a diagonal matrix
f(e) whose diagonal entries are 0 or 1. We generalize this to non-commutative “edges” by alfowing
to contain other operators, i. €.(€) can be any Hermitian operator (i. e., matrix)[@l].°

Definition 6.5. A quantum hypergrapls a pairl’ = (V,£) whereV is ad-dimensional Hilbert space
and¢ is a finite set such that eaete £ is identified with a Hermitian operatdi(e) € [0, 14].

We define aoverof a quantum hypergraph to be a finite suti3€t € such thaty ¢.c f(e) > |. The
cover number @) is the size of the smallest cover Iof

Likewise, we define a fractional cover to be an assignmenE — R, of non-negative weights to
the edges such that... w(e) f(e) > |, and the fractional cover number as

Zw(e)f(e)zl}.
ect

Note that this corresponds exactly to our previous definitions for hypergraphs. The problem of finding
the fractional cover has equivalent forms that are natural and interesting, which are discussed at the end
of this section.

&) = mV&n{ z w(e)

ecé

9A complex matrixA is Hermitian (self-adjoint) ifA = A* where* denotes the conjugate transpose. Here we use the fact
that all our previous results for real symmetric matrices generalize to complex Hermitian matrices.
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It is important to note that the notion of “vertex” is lost because the matri¢esc My are not
necessarily diagonal in a common basis. However, it is again clear from the definitions that a quantum
hypergraph cover problem is just a special case of integer covering SDP’s (extended to complex matri-
ces), so we may useheorem 6.1to give an efficient deterministic approximation. Thus the theorem
below follows.

Theorem 6.6. Suppose we are given a quantum hypergréph (V, ) with fractional cover number
¢(I), withdim(V) = d and|€| = n. Then we can find an integer coverfobf size k= ¢(I") - O(logd) in
timepoly(n,d).

6.5 Other Applications

Our integer covering SDP (and its extension to complex matrices) also encompasses two other natural
problems from quantum information theory. Given a functfonn] — [0, 14], one may want to find a
probability distributionX over [n] that achieves the optimum of either of the following quantities:

1. miny A1 (Ex[f(X)]) = minx || Ex[f(X)]],
2. maxx Ag(Ex[f(X)]).

The former minimizes the norm of the expected value of the distribution, which is also its largest eigen-
value, while the latter may be viewed as maximizing the lowest energy state of a quantum system, which
is also its smallest eigenvalue. The second can be formulated as a covering SDP by using the cost vector
c =1 (the all 1's vector), and then normalizing the solution vegttr be a probability distribution. The
first can be formulated as the second by considering the funictioh

In both cases, our pessimistic estimators give an “integral solution” that is worse by & (tazsd).
In this case, an integral solution is actually a distribution with sparse support; we sample from the
solution distributiorX to get a distributiorX with support of sizeé)(y—l2 logd) such that the corresponding
objective is worse by at most a factor©flogd).
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A Errorin[ 33

Due to the error, the main claim o38] remains open.

Conjecture A.1. Let f : [N] — [—Iq, 4] be a matrix-valued function with expectati@fif] = 0. LetG
be an expander graph ¢N] with spectral gag. LetYi,...,Yi be a random walk of lengtkon G (for
sufficiently largek). Then it holds that

w3, 100] 4] < e
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The above statement gives a relatively strong bound; in its weakest non-trivial form, the conjecture
would be that

Pr[H&if(Yi)H > y] < poly(d)ePovEnk,

The error in B3] is in the application of the Golden-Thompson inequalithéorem 2.2 The
following derivation, which appears in the proof of Theorem 3.6 in the second column of page 401
of [33]19, is incorrect:

E Tr(exp(tiif(Yi)D E [Tr(ﬂexp(tf(\(i)))]

where theY; are the steps in a random expander walk and the expectation is over all walks. This is
incorrect because the Golden-Thompson inequality does not generalize to more than two terms, i. e., the
following does not hold in general for real symmetric matriéeB, C:

Tr(exp(A+B+C)) < Tr(exp(A) exp(B) exp(C))

and it is not hard to come up with counterexamples.
We have tried various techniques to bypass this problem, but we have not discovered any method to
get parameters that are sufficient for our applications. In the notati@8pfif would suffice to prove

( [exp(t Zf ) expitf Yl))D < [|AB - Tr (E[exp(tiif(\(i)ﬂ)

( [exp( Zlf )D < d||ADy.

We know from the proof of th&heorem 2.4that both of the inequalities hold when the normalized
adjacency matrix of the graphAs=J/n, i. e., we sample from the complete graph with self-loops, which
corresponds to independent sampling. We do not know counterexamples to either of these inequalities
for sampling according to an expander walk. Thus, as far as we know, Theorem 33 widy be true

as stated.
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