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Abstract: We study the communication complexity of the disjointness function, in which
each of two players holds lasubset of a universe of sizeand the goal is to determine
whether the sets are disjoint. In the model of a common random string we prov@(k)at
communication bits are sufficient, regardlessofin the model of private random coins
O(k+loglogn) bits suffice. Both results are asymptotically tight.

1 Introduction

Communication complexity, introduced by Yabtd, is an extremely basic and useful model which has
been widely studiedd]. Set disjointness is perhaps the most studied problem in this model, and its
complexity has been used for such diverse applications as circuit complexity {d4])gafd auction
theory (e.g. 9]).

Here we give a simple protocol, showing that, in the model of common random coins, the proba-
bilistic communication complexity of disjointness depends only on the sizes of the sets, and not on the
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size of the universe from which they are taken. This contrasts with the deterministic model, in which
dependence on the universe size cannot be avoided.

We now briefly define the model; more details can be found in the excellent Bhok [

Let f : {0,1}" x {0,1}" — {0,1}. Alice and Bob are given respectivetyandy from {0,1}", and
need jointly to computd (x,y). They alternate sending bits to each other according to a pre-specified
protocol and then announce a bit. In a deterministic protocol, their answer must always be correct,
i.e., equal tof (x,y) for every input pailx,y. The deterministic communication complexdy f) is the
minimum number of bits the players exchange on the worst case input in the best deterministic protocol
for f.

In a probabilistic protocol we have the common randomness model where Alice and Bob share an
infinite string of independent, unbiased coin tosses, and are required to give the correct answer with
a probability bounded away from 1/2 @veryinput. As we mostly ignore constant factors, the exact
probability of being correct is not important but for concreteness let us assume that the probability of
being correct is at least/3. The probabilistic communication complexRyf) is the minimum number
of coin tosses used plus bits exchanged by the players on the worst case input and coin tosses in the best
probabilistic protocol forf.

In the possibly more realistic private coins model each player can generate his/her own randomness.
By a result of Newman{], any problem withT different inputs can also be solved in this model, adding
only O(loglogT) communication bits to that of the common randomness model. In view of this result
we do our analysis in the model of common randomness.

We are also interested in what is commonly called the “Las Vegas”-type probabilistic algorithms
where the answer is required always to be correct but the complexity measure is the expected number of
bits exchanged. We denote this complexityRy f).

Let DISJ" denote the disjointness function, namelg (S T) = 1iff SNT = 0 (the inputsS T are
given by their characteristic vectors). LisJ, denote the restriction of this functions to inputs s&fE
which are both of siz&.

It is not difficult to see that the deterministic complexity is lower bounded by the logarithm of the
rank of corresponding game matrig] [and the following lower bounds follow from lower bounds on
the rank of the disjointness matrix. For a proof of the rank lower bound 4$gggge 175.

Theorem 1.1.
1. D(DIsS") = O(n).
2. D(p1s%) = ©O(log (y)) for every k< n/2.

The probabilistic complexity is far more subtle. A first lower boundX{f,/n) whenk = n/3 was
proved by Babai et al1]. This bound was strengthened by Kalyanasundaram and Schrijgeinfpli-
fied by Razborov12], and further simplified by Bar-Yossef et aB]| yielding the following theorem.

Theorem 1.2.[5, 12, 3]
1. R(pI1sy") = O(n).
2. Forany c< 1/2, R(DIs%) = Q(k) for every k< cn.
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Proof. (Sketch) The lower boun@(n) for the first part is given in the quoted papers. The upper bound
is trivial as either party can just send its input. For the same reason the lower bound hapkgasdgar
for somen.

The lower bound for the second part is obtainedKet ko by settingng = k/co and studying the
problem when only the firgly elements are allowed to be in the set. For larger valudsveé fix a
valued and let the firsd elements be in the first set and not in the second set while the follodving
elements are in the second set but not in the first. This reduces the original problem to a problem with
(k—d)-element sets and a universe sizeef2d. Selectingd suchk—d = co(n—2d) makes it possible
to apply the first lower bound. O

The gap between the deterministic (and thus probabilistic) upper boufkeafrem 1.1and prob-
abilistic lower bound offheorem 1.%or DISY, naturally raises the question what is the probabilistic
complexity fork = o(n).

In this paper we prove that the lower bound is tight forlalland in particular the probabilistic
complexity is independent of the universe size

Theorem 1.3. In the model of common randomnessbR ) = O(k) for all k.

In the next section we prove this theorem for the very special case of constant size séts, D€l).
This will both give some motivation as well as the “base case” to the protocol and proof for gkeneral
which we give inSectiord.

By applying the procedure of Newmari jwe get a result for the private coin model.

Theorem 1.4. In the model of private randomnesg,0Rs %) = O(k+loglogn) for all k.

In Section6 we establish that the additive term log lots needed.

Finally, looking at Las Vegas protocols, it turns out that the complexity is different for positive and
for negative instances. Informally what happens is that to be certain that two sets intersect, we need to
know a point in the intersection and this gives an added complexity of [bge need for this extra term
is formally argued irSection5.

Theorem 1.5. In the model of common randomnesg(RsJ) = O(k) for instances of disjoint sets and
Ro(DIsy) = O(k+logn) for non-disjoint sets.

This protocol can also be transformed to the model of private randomness, addind legihogn).

As a side remark let us note that these results were proved over 10 years ago, and were since used
and referred to in several papers (e.10]]. Writing them up was long overdue, but better late than
never.

2 Notation

We use standard notation throughout the paper with the exception of the notatidn ekyjch is a
function of the formck for some constart > 1 which is not specified and might change.
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3 Simultaneous protocol for constantk

In this section we prove the following theorem, which holds forkatiut will be used later only for a
large constant value &

Theorem 3.1. In the model of common randomnesgpR ) = O(2%) for all k.

Proof. We actually prove a stronger theorem, namely, we giginaultaneousprotocol [L3, 8, 2] for
DIs¥. In such protocols each player sends only one message to a referee, who (even without access to
the random string or any of the inputs) can determine the function value with high probability.

The players regard their shared random string as a sequehee e vectors of length, repre-
senting the random subsels 7, - -, Z; of [n]. We describe Alice’s message first. Assume her input is
the subseS C [n]. Alice sends the bitsy,---,a, with a = 1 iff SC Z. Bob behaves similarly, only
with respect to the complements of the If his inputisT C [n], he sends the sequence of liits: - - , b,
with by = 1 iff TNZ = 0. Now the referee answers 1 if for soin@e havea; = bj = 1 and answers 0
otherwise.

It is clear that ifDISJ(ST) =0, i.e.,SandT intersect, no such indeixexists regardless of the
random string, and the referee will always give the correct answer. On the other hausd) (5, T) =1,
i.e.,SandT are disjoint, we will see that the probability that no such indexists is small.

First note that for a random s&t the eventSC Z andT NZ = 0 are independent, sinG&andT are
disjoint, and membership i is decided by independent coin tosses for every elemgnt.iMoreover,
the two probabilities are exactly® each. We conclude that the probability tEatloes not satisfy both
events is 1- 2-%. Thus the probability that atl= c2% independently chosen subs@idail to prove
the disjointness o8 andT is (1—2-%)! < exp(—c) which we can make arbitrarily small by choosing
the constant sufficiently large. O

4 Proof of Theorem 1.3

First, let us give an intuitive overview of the proof. Assume Alice and Bob are holding, respectively,
the setsS T € [n], each of sizé&k. They will attempt to construct a proof that their sets are disjoint, in
the form of a subseZ C [n] with SC Z andT C Z. Clearly if they find such a se&t then their inputs

are indeed disjoint. We will need to show that if they fail, then with high probability their sets intersect.
Later in Section5 we will modify the protocol never to make mistakes and where randomness is only
used to bound the expected number of bits exchanged.

The protocol will proceed in phases, which can be viewed as a series of downward self-reductions
of the problem, to the same problem on smaller size sets. More precis&y4eSandTy = T be the
inputs to the first phase. Then after phatiee players will hold set§ andT;, respectively, of total size
ki = |S|+ |Ti|, which, unless the protocol has already halted, have the following properties for every
i>1:

1. S andT; are disjoint iff§_1 andT;_1 are;

2. ki <7ki_1/8;
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3. The communication used by the two players in phas@©(k;).

The players will continue until a phagefor which k; < ¢, for a constant which we choose to be
the same constamtas inSection3, at which point they will resort to the protocol @heorem 3.1on
Sj andT;. By property (1) it is indeed equivalent to disjointness of the origBahdT. If the protocol
halts before this happens it will halt with the output “not disjoint.” We maintain the property that if the
sets are disjoint then the probability of halting with output “not disjoint” in phiaseexp—k;).

As the set sizes, by property (2), form a geometric progression, the probability of ever halting in an
early phase with the incorrect answer “not disjoint” is bounded by -egp Moreover, by property (3),
the total communication i©(3; ki), which is a geometric progression as well, bounded, up to constant
factor, by the first ternkg = 2k. Let us fill in the details.

We describe one phase. At the input to the phase, Alice I®tfsize|S| = sand Bob holdsI' of
size|T| =t, with bothsandt known to both players. At the end of the phase they holdSetadT’ of
sizess andt’ respectively. Assume that< t, the other case being symmetric.

As before, we think of the random tape as a long sequence of random sfihgets.. of [n]. Alice
finds the first indexa < 2% (if any) such thaS C Z,. If there is no such index the protocol halts with
answer “not disjoint.”

Bob checks if T NZy| < 3t/4, in which case he sends Alice the integer (T N Z,| and otherwise
he sends 0. If he does not send 0, then the playelS se6= SNZ, andT' =T NZ,, and proceed to
the next phase. If Bob sends 0, they halt and outputSleed T intersect.

Lemma 4.1. The following properties hold:
1. The communication complexity of a phase {5©t);
2. Sand T are disjointiff Sand T are;
3. IfSand T are disjoint, then except with probability at mesgy—t), t' < 3t/4.

Proof. Properties (1) and (2) clearly hold. Property (3) holds due to the independedgedf from
the event tha C Z; and standard Chernoff bounds. O

The proof of the theorem follows from the lemma by induction on the phases, exactly along the lines
of the overview.

5 Making the protocol Las Vegas

In this section we consider protocols that always output a correct answer andljrewem 1.5 Note

that when our original protocol outputs “disjoint” it is always correct and we mainly have to make sure
that there is no error in the case when we output “not disjoint.” Let us first establish that we cannot do
this maintaining the complexity &(k) for small values ok.

Lemma 5.1. For each Las Vegas protocol for the case-K we have a communication complexity of at
leastQ(logn).
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Proof. For each singleton séi} and fixed random string fix the shortest accepting conversation when
both players hold this set. If two of these conversations are equal then we can create a possible commu-
nication pattern with an incorrect output. Thus we have at led#fterent communication patterns and
hence we us@(logn) bits of communication on the average. O

We proceed to prov&heorem 1.5 We modify our original protocol to make sure that it always
produces a certificate for its answer. Let us first give some intuition for the modifications we make to
the protocol.

There are two places in the original protocol in which the players halt without a certificate. The first
is not very interesting and happens if the indeof the first seZ, containingSis greater than?. If we
measure the expected communication, we can afford always teaseni is expected to be small.

The more interesting reason for halting is whien 3t/4. Itis easy to see that in this case it is quite
likely that the sets have an intersection of Sixg) and thus if Bob chooses a random element from his
set and sends it to Alice, we have a constant probability of having found an element in the intersection
of the two sets and the protocol can safely terminate.

If the sets are disjoint, the case> 3t/4 happens with probability expt) and since we need
logn bits to specify an element, we get a contribution (X logn to the expected communication
complexity. Fort > loglogn the geometric decay & will ensure that the total contribution of these
terms isO(1). For smallerk; we have to be more careful, and let Bob send an element only with a
probability that would still make the expected cost small.

When the sets are not disjoint, this probability introduces “delay” in sending an element. However
we will see that this does not affect the asymptotic complexity, since here we can afford a communication
costQ(logn) bits anyway.

Let us now describe the protocol.

Each player holds se&andT which are updated every round, with the sige$ Sandt of T known
to both players. We describe a round of the protocol assuming that If s> t the roles of Alice and
Bob are interchanged.

As before, the random tape is interpreted as a long sequence of random gyl&ets. of [n].

1. Alice finds the first indexa, such thaSC Z,.

2. Bob setd’ = |T NZ,| and sends it to Alice. If’ = 0 they halt with the output “disjoint.”
3. If t < 3t/4 they both updat& T accordingly and proceed to the next round.
4

. If t > 3t/4 then Bob flips a coin, whose probability of Heads is fhit/logn). If it comes up
Tails, Bob tells Alice, and they repeat the round again with the s@me If it comes up Heads,
Bob picks a random elemeitof T, and sends it to Alice. If € S Alice outputs “Not disjoint.”
Otherwise, they repeat the round with the s&yik.

Let us analyze the complexity of this protocol. Lmtdenote the size of the intersection of the
initial inputs. The same analysis as in the previous section shows that in any rourtd>witém, the
eventt’ > 3t/4 happens with probability at most exgt). Thus we expect again tHe to decrease
geometrically till that point.
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Let us first analyze the communication used till the first round whetelém. Alice’s mes-
sage is in expectatio®(k;). Bob’s message is of lengtB(logk;) for sendingt’, and with probabil-
ity texp(—t)/logn it increases by an additional logbits for the itemj. The latter part is at most
texp(—t) < O(1) bits in expectation and thus the total expected cost of each roudtkis The ex-
pected geometric decreasekpfuarantees that in expectation the communicati@ris up to the point
thatt < 16m. In particular, ifm= 0, this means that the total communicatio®ik) in expectation.

Now let us analyze the cost aftelgets below 16 (which happens only if the inputs intersect).
Note that now, there can be at most a constant number of rounds before which we hasig/4.
Moreover, when this happens, we have a constant probability that the randdnalso satisfieg € S
and the protocol halts. Note that Bob chooses to pick guefth probability at least mifiL, m/logn).
So we expecO(1+ (logn)/m) repetitions of this round, before Bob choogesBut each repetition
costs onlyO(m) bits, so in expectation, this part, as well as the cost of sengdiaghount to a total of
O(m+1logn) < O(k+logn) bits, as promised.

Finally, we note that the protocol always halts with a certificate for the answer given.

6 Private randomness

As stated in the Introduction, the general transformation of Newmjagifes a protocol fobis g in the
private coins model with complexi®(k+loglog(n*)) = O(k+loglogn). Let us show that the additive
term is needed in the case whes 1. This turns out to follow from a general lower bounds of Ya8|[

Let us assume that for anyx such thatx # X' there is ay such thatf (x,y) # f(X,y) and a similar
property holds fory. We call such a functionon-redundant This is a natural assumption since if for

x # X there is no sucly we can considex andx to be the same input and reduce the set of possible
inputs. Now we have the following lower bountiJ Theorem 5].

Theorem 6.1 ([L3]). For every non-redundant communication problem X xY — {0, 1}, the prob-
abilistic communication complexity of f in the private coins model requ@eglog|X| +loglog|Y|)
bits.

This proves thafheorem 1.4s optimal up to constant factors assJ is the identity function on
[n]. As Yao's paper does not contain a proof of this theorem, we give here a sketch of the proof (which
probably exists somewhere in the literature).

Proof. (Sketch) Assume that at modtbits are exchanged in a probabilistic proto€ofor f and, in-
creasing the complexity by at most a factor of two, we assume that Alice and Bob each send every other
bit. For everyx € X, let v(x) denote the real vector of length< 29+1 whose entries are labeled by
Boolean stringsy of even length at most, such thaw(x). is the probability that Alice sends 0 when
holding inputx given thato describes the communication so far. It is not difficult to see that for every
two inputsx, X' for Alice, and every inpuy for Bob, the probability thaP acceptgx,y) and the proba-
bility that it acceptgX,y) differ at most by the.; distance of/(x) andv(X'). But given thatf (x,y) and
f(X,y) differ for at least somg, the vectors/(x) for all x € X must be at least 1/3 apartlin-distance.
A standard volume argument shows that in dimensithrere are at most exp such vectors. It follows
thatd = Q(loglog|X]).

O
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