THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43
http://theoryofcomputing.org

Easily refutable subformulas of large random
3CNF formulas

Uriel Feige Eran Ofek

Received: May 2, 2006; published: February 9, 2007.

Abstract: A simple nonconstructive argument shows that most 3CNF formulasaonith
clauses (where is a sufficiently large constant) are not satisfiable. It is an open question
whether there is an efficient refutation algorithm that for most formulas erithlauses
proves that they are not satisfiable. We present a polynomial time algorithm that for most
3CNF formulas witten®/2 clauses (where is a sufficiently large constant) finds a subfor-
mula with ©(c?n) clauses and then uses spectral techniques to prove that this subformula
is not satisfiable (and hence that the original formula is not satisfiable). Previously, it was
only known how to efficiently certify the unsatisfiability of random 3CNF formulas with

at least polylog(n)) - n*?2 clauses. Our algorithm is simple enough to run in practice. We
present some experimental results.

ACM Classification: F.2.2

AMS Classification: 68Q17,68Q25

Key words and phrases:proof complexity, average case analysis, Boolean formula, 3CNF, refutation,
spectral methods

1 Introduction

A 3CNF formula¢ overn variables is a set ah clauses, each one contains exactly 3 literals of three
different variables. A formula is satisfiable if there exists an assignment toit@riables such that in

each clause there is at least one literal whose value is true. The problem of deciding whether an input
3CNF formulag¢ is satisfiable is NP-hard, but this does not rule out the possibility of designing a good

to publish the work electronically and in hard copy. Use of the work is permitted as
long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, séetp://theoryofcomputing.org/copyright.html.

(© 2007 Uriel Feige and Eran Ofek DOI: 10.4086/toc.2007.v003a002

Authors retain copyright to their work and grant Theory of Computing unlimited ?hts

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright.html
http://dx.doi.org/10.4086/toc.2007.v003a002

URIEL FEIGE AND ERAN OFEK

heuristic for it. A heuristic for satisfiability may try to find a satisfying assignment for an input formula
¢, in case one exists. A refutation heuristic may try to prove that no satisfying assignment exists. In this
paper we present an algorithm which tries to refute an input formul@he algorithm has one sided
error, in the sense that it will never say “unsatisfiable” on a satisfiable formula, but for some unsatisfiable
formulas it will fail to output “unsatisfiable”. It then follows that for a formulaon which the algorithm
outputs “unsatisfiable,” its execution @nis a witness for the unsatisfiability @f.

How does one measure the quality of a refutation heuristic? A possible test may be to check how
good the heuristic is on a random input. But then, how do we generate a random unsatisfiable formula?
To answer this question we review some known properties of random 3CNF formulas. The satisfiability
property has the following interesting threshold behavior. ¢déte a random 3CNF formula with
variables andtn clauses (each new clause is chosen independently and uniformly from the set of all
possible clauses). As the paramatés increased, it becomes less likely tigats satisfiable, as there
are more constraints to satisfy. 18] it is shown that there exists, such that forc < c,(1— €) almost
surelyé is satisfiable, and for > c,(1+ ¢€), ¢ is almost surely unsatisfiable (for somevhich tends to
zero asnincreases). It is also known thab2 < ¢, < 4.596 [14, 12, 13]. We will use random formulas
with cnclauses (foc > ¢, (1+ €)) to measure the performance of a refutation heuristic. Specifically, the
refutation heuristic is considered good if for some (1+ €)c, it almost surely proves that a random
formula withcn clauses is unsatisfiable.

Notice that for anyn, asc is increased (for > cy(1+ €)), the algorithmic problem of refutation
becomes less difficult since we can always ignore a fixed fraction of the clauses. The following question
is still open: how small cao be so that there is still a polynomial time algorithm which almost surely
refutes random 3CNF formulas witim clauses¢ may also be an increasing functionrf

A possible approach for refuting a formugais to find a resolution proof for the unsatisfiability of
¢. In this approach one derives new clauses implie@ by combining pairs of clauses in which one
clause contains a variable and the other clause contains the negation of this variable. Any satisfying
assignment must satisfy at least one of the remaining literals contained in the two clauses, and hence the
collection of these literals is a CNF clause implieddayA sequence of iterations of this resolution step
that eventually generates the empty clause is a proofjtignhot satisfiable. Chatal and Szemeédi [3]
proved that a resolution proof of a random 3CNF formula with linear number of clauses is almost surely
of exponential size. A result of a similar flavor for denser formulas was given by Ben-Sasson and
Wigderson §] who showed that a random formula with'>—¢ clauses almost surely requires a resolution
proof of size 207%) These lower bounds imply that finding a resolution proof for a random formula
is computationally inefficient.

A simple refutation algorithm can be used to refute random formuiath n? clauses. This is done
by considering only those clauses that contain a particular vanaldféxing x to be true leaves about
half of the selected clauses as a random 2CNF formula with roughg 8lauses. A 2CNF formula
with this number of clauses is almost surely not satisfiable. Moreover, any polynomial time algorithm
for 2SAT can be used to certify that this particular sub-formula is not satisfiable. The same can be done
when fixingx to be false, implying that no matter hows assigned, the formulé cannot be satisfied.

A new approach, introduced by Goerdt and Krivelevichlii]| gave a significant improvement and
reduced the bound to 18g- nk clauses for efficient refutation ok&NF formulas. This approach was
later extended ing] and [11] to handle also random 3CNF formulas with/?+¢ and polylogn) - n3/2

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 26

http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

clauses, respectively. 1] 7] it is shown how to efficiently refute a randonk@NF instances with at
leastcr clauses.

The difficulty of finding refutation algorithms for formulas with linearly many clauses may lead
one to assume that no such algorithm exists. It is showJithpt this assumption (that there is no
polynomial time refutation heuristic that works for most 3CNF formulas witlclauses, where is an
arbitrarily large constant) implies that certain combinatorial optimization problems (like minimum graph
bisection, the 2-catalog segmentation problem, and others) have no polynomial time approximation
schemes. It is an open question whether it is NP-hard to approximate these problems arbitrarily well,
though further evidence that these problems are indeed hard to approximate is givgn in [

Our refutation algorithm is based on techniques similar to those used in earlier work, sQch &k [

We use these techniques in a different way, resulting in an algorithm that is easier to implement, easier
to analyze, and works at lower densities than previous algorithms. For example, both the algorithms
in [9, 11] and our algorithm perform eigenvalue computations on some random matrices derived from
the random input formula. However, our matrices are much smaller (of orderather thann?),

making the computational task easier. Moreover, the structure of our matrices is simpler, making the
analysis of our algorithm simpler, and easier to apply also to formulas with fewer clauses than those
in [9, 11]. As a result of this simplicity, we can show that our algorithm refutes formulas evitf?
clauses, whereas the algorithms giver@pgnd [11] are claimed only to refute formulas with(n3/2+¢)
andQ(poly(logn) - n%?) clauses, respectively. An implementation of our algorithm refuted a random
formula withn = 50000 variables and 273359323n%2 clauses (see details Bections).

In some other respects, our algorithm is more limited then the algorithn® iri]. An algorithm
is said to providestrong refutationf it shows not only that the input 3CNF formula is not satisfiable,
but also that every assignment to the variables fails to satisfy a constant fraction of the clauses. Our
refutation algorithm does not provide a strong refutation. The problem of strong refutation was addressed
in [4], where it was shown that variations of the algorithms®fi[1] can strongly refute random 3CNF
formulas with at least Idtn) - n¥2 clauses. The ability to perform strong refutation is an important
issue, and its relation to approximability is discussed]n [

2 Preliminaries

2.1 The random model

Definition 2.1. A clause is a 3-tuple of literals that belong to three different variables. Th&, sethe
set of all possible clauses ovefixed variables (there aren22(n—1) - 2(n— 2) such clauses).

We use the following model for generating the random forngula

Definition 2.2. A 3CNF formulag¢ is generated by choosimgclauses front, independently at random
with repetitions. Such a random formula is denotedpbyr C".

Although we concentrate on a specific random model for generating random formulas, our algorithm
succeeds also on other related random models. For example the formula can be a randam’set of
distinct clauses.

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 27

http://dx.doi.org/10.4086/toc

URIEL FEIGE AND ERAN OFEK

2.2 Notation

We writea(n) ~ b(n) if limn_e % — 1. We use the term w.h.p. (with high probability) to denote a

sequence of probabilities that converges to h areases.

2.3 Efficient certification of a property

An important concept which will be frequently used is the concepéftitient certification Let P
be some property of graphs/formulas or any other combinatorial object. An algofitbentifiesthe
property P if the following holds:

1. On any input instance the algorithm returns either “has P” or “don’t know.”

2. SoundnessThe algorithm never outputs “has P” on an instagioghich does not have the prop-
erty P. The algorithm may output “don’t know” on an instarcevhich has the property P (the
algorithm has one sided error).

We will use certification algorithms on random instances of formulas/graphs taken from some probabil-
ity spaceC. We shall consider properties that are almost surely true for the random object taket from
A certification algorithm isompletewith respect to the probability spa€eand a property P if it almost
surely outputs “has P” on an input taken frdn

The computationally heavy part of our algorithm is certifying that two different graphs derived from
the random formula do not have a large cut. One of these two graphs is random, and the other is
a multigraph that is the union of 6 graphs, where each of these graphs by itself is essentially random,
but there are correlations among the graphs. A cut in a graph is a partition of its vertices into two sets.
The size of the cut is the number of edges with one endpoint in each part. A certification algorithm for
verifying that an input graph witinm edges has no cut significantly larger thaf2 is implicit in [16].
This algorithm is based on semi-definite programming; if the maximum cut in the input graph is of size
at mostm(1/2+ ¢), then the algorithm outputs a certificate that the maximum c@ is bounded by
m(1/2+ 6(€)), whered(e) — 0 ase — 0. A computationally simpler algorithm can be applied if the
graph is random. In7] itis shown how to certify that in a random graph taken frGy,, the size of the
maximum cut is bounded byn(1/4+ 6(1/+/d)), thus bounding the maximum cut by 1/2+€) when
d is large enough. This is done by removing the vertices of highest degre&Zramd then computing
the most negative eigenvalue of the adjacency matrix of the resulting graph.

2.4 An overview of our refutation algorithm

Our algorithm builds on ideas taken from earlier work(([9, 6, 7, 5, 11]). This section gives an informal
overview of the algorithm at a fairly detailed level. Other sections of this manuscript fill in the formal
details.

The input is an arbitrary 3CNF formulawith n variables andn= cn®/? clauses, whereis a large
enough constant. Below we describe the expected behavior of our algorithm when the input formula is
random. The algorithm first greedily extracts frgma subformulap’. This is done as follows. We say
that two clausematchif they differ in their first literal, but agree on their second literal and on their third

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 28

http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

literal. For example, the clausés V x2 vV x3) and(x4 VX2 VV x3) match. The subformulé’ is constructed
by greedily putting intap’ pairs of clauses that match, until no further matches are foupd\ive allow
each clause o to participate in at most one matched paipdf. Let ' be the number of clauses .

A simple probabilistic argument shows that we can expéct O(m?/n?) = ©(c?n). Moreover,¢’ is
essentially a union of two random (but correlated) formyiaand¢, (each containing one clause from
every pair of clauses that are matche@fh Our algorithm will now ignore the rest @f, and refutep’.
As explainedg’ is a union of two random formulas. Here we use an observation that is mag]ethmeft
we shall call the 3XOR principle.

The 3XOR principle: In order to show that a random 3CNF formula is not satisfiable, it suffices to
strongly refute it as a 3XOR formula.

Let us explain the terms used in the 3XOR principle. A clause in a 3XOR formula is satisfied if
either one or three of its literals are satisfied. A strong refutation algorithm is one that shows that every
assignment to the variables leaves at least a constant fraction of the clauses not satisfied (as 3XOR
clauses, in our case).

A proof of the 3XOR principle is given in6]. We sketch it here, and give it in more details in
Section3. Observe that in a random formula every literal is expected to appear the same number of times,
and if the number of clauses is large enough, then things behave pretty much like their expectation. As a
consequence, every assignment to the variables sets roughly half the occurrences of literals to true, and
roughly half to false. Hence every assignment satisfies on average 3/2 literals per clause. Moreover, this
property is easily certifiable, by summing up the number of occurrences ofrtfust popular literals.

Given that every assignment satisfies on averg@eligerals per clause, let us consider properties
of satisfying assignments (if such assignments exist). The good option is that they satisfy one literal
in roughly 3/4 of the clauses, three literals in roughly4lof the clauses, and 2 literals in a negligible
fraction of the clauses. This keeps the average roughlyat@&nd indeed nearly satisfies the formula
also as a 3XOR formula, as postulated by the 3XOR principle. The bad option (which also keeps the
average at &) is that the fraction of clauses that are satisfied three times drops significantly belpw 1
implying that significantly more than/& of the clauses are satisfied either once or twice, or in other
words, as a 3NAE (3-“not all equal” SAT) formula. But here, let us combine two facts. One is that
for a random large enough formula, every assignment satisfies roughlgf3he clauses as a 3NAE
formula. The other (to be explained below) is that there are known efficient algorithms for certifying
that no assignment satisfies more tha# 3 € fraction of the clauses of a 3NAE formula. Hence for a
random 3CNF formula, one can efficiently certify that the bad option mentioned above does not occur.

Having established the 3XOR principle, the next step of our algorithm makes one round of Gaussian
elimination. That is, under the assumption that we are looking for near satisfiability as 3XOR (which
is simply a linear equation modulo 2), we can add clauses modulo 2. Adding (modulo 2) two matched
clauses, the common literals drop out, and we get a clause with only two literals whose XOR is expected
to be 0, namely, a 2EQ clause (EQ for equality). For example, from the cléxsese; @ x3) and
(x4 X2 @ X3) one gets the clauseq = x4). Doing this for all pairs of matched clausesd@h we get
a random 2EQ formulayeq. If ¢’ was nearly satisfiable as 3XOR, thény must be nearly satisfiable
as 2EQ. But ifg’ is random, themyeq is essentially a random 2EQ formula. For such formulas, every
assignment satisfies roughly half the clauses. Moreover, there are known algorithms that certify this (to
be explained shortly). Hence we can strongly refgig, as 2EQ, implying strong refutation @f as

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 29

http://dx.doi.org/10.4086/toc

URIEL FEIGE AND ERAN OFEK

3XOR, implying strong refutation ap’ as 3SAT, implying refutation (though not strong refutation) of
¢ as 3SAT.

Let us briefly explain here the major part that we skipped over in the description of our algorithm,
namely, how to certify that a random 2EQ formula is ng2 ¥ ¢ satisfiable, and how to certify that a
random 3NAE formula is not 3!+ ¢ satisfiable. In both cases, we reduce the certification problem to
certifying that certain random graphs do not have large cuts, and then use the certification algorithms
mentioned inSection2.3. (The principle of refuting random formulas by reduction to random graph
problems was introduced ii()].)

To strongly refute random 2EQ formulas, we negate the first literal in every clause, getting a 2XOR
formula. Now we construct a graph whose vertices are the literals, and whose edges are the clauses. A
nearly satisfying 2XOR assignment naturally partitions the vertices into two sides (those literals set to
true by the assignment versus those that are set to false), giving a cut containing nearly all the edges. On
the other hand, if the original 2EQ formula was random, then so is the graph, and it does not have any
large cut. As explained iBection2.3 we can efficiently certify that the graph does not have a large cut,
thus strongly refuting the 2XOR formula, and hence also strongly refuting the original 2EQ formula.

To strongly refute random 3NAE formulas, we again consider a max-cut problem on a graph (in fact,
a multigraph, as there may be parallel edges) whose vertices are the literals. From each 3NAE clause we
derive three edges, one for every pair of literals. For example, from the 3NAE dbauge x3) we get
the edge$xi,X2), (X2,X3) and(xz,x1). Itis not hard to see that if /8 + ¢ fraction of the 3NAE clauses
are satisfied as 3NAE, thar%@?1 +¢e)= %Jr 2—38 fraction of the edges of the graph are cut by the partition
induced by the corresponding assignment. Note that in our cagg {bét is the union of randony;
and randomy,) this graph is essentially a union of 6 random graphs: 3 graphs derived from the clauses
of ¢1 (one with edges derived from the first two literals in every clause, one with edges derived from
the last two literals, and one from the first and third literal), and 3 graphs derivedgiroience it is
not expected to have a cut containing significantly more than half the edges. One may certify that this
is indeed the case either by using the algorithml@ pn the whole graph, or by using the algorithm
of [7] on each of the 6 random graphs separately.

Summarizing, our refutation algorithm extracts frgna subformulap’ (composed of matched pairs
of clauses), checks that iff almost all literals appear roughly the same number of times, derives from
¢’ certain graphs onr2vertices and certifies that they do not have large cuts (e.g., by computing the
most negative eigenvalue of their adjacency matrices). The combination of all this evidence forms a
proof that¢ is not satisfiable. I# is random and large enougbrf/? clauses), then almost surely the
algorithm will indeed manage to collect all the desired evidence.

3 The refutation algorithm

The input formulap is taken fronCﬁ”g/Z. We will use(?,w, ¢) to denote a clause in which the second and
the third literals arav and/, respectively, and the first literal can be any literal. The following algorithm
is used to extragp’ from ¢.

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 30

http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

Algorithm Extract (¢)
Setg; = ¢ = 0.
For every ordered pair of literalsv, ¢):

1. Count the number of clauses nof the form(?,w, ¢) and store it i)

2. If Ny > 2 add togy the first appearance of(@ w, ¢) clause and add tg,
the second appearance ofaw, /) clause.

Returng’ = (¢1, ¢2).

Each of¢s, ¢, is a random formula, though clausesgin(and ¢,) are not completely independent
of each other: if a clausg,y, z) appears, then the claudey,z) cannot appear. From now on we will
concentrate on refuting’, ignoring the rest ofy. The number of matched pairs ¢ is denoted bym
(in Section2.4we usednto denote the number of clausesfinfrom here onmwill denote the number
of matched pairs ig’).

Lemma 3.1. Let ¢’ be the formula returned by Extrg@t), where¢ cg Cﬁ”3/2. W.h.p. the number of
matched pairs i’ is ~ %”.

The proof ofLemma3.1is deferred toSection4. Before specifying the algorithm, we introduce
additional notation and definitions which will ease the description of the algorithm.

Definition 3.2. Let ¢ be any 3CNF formula oven variables. Thegraph induced by has 2 ver-
tices (corresponding to all possible literals) and the following edges. Each clagsadfices three
edges by taking all (unordered) pairs of literals from it (e.g., the clausez) induces the edges
(X,Y),(X,2),(y,2)). We denote the (multi) graph induced byoy G,.

Definition 3.3. Let ¢’ = (¢1, ¢2) be a 3CNF formula witim pairs of matched clauses. The grapf is
the graph induced by’ (as inDefinition3.2). The graprGﬁ?q is a graph with @ vertices (corresponding
to all literals). Its edges are as follows: each matched pair fperg,, say (x,w,¢), (y,w,¢), induces
exactly one edgéx,y). Note that we negate the literal which corresponds to the claugge of

Definition 3.4. Let ¢ be a formula witm variables andnclauses. Thenbalanceof a variable (denoted

by Im;) is the difference in absolute value between the number of times it appears with positive polarity
and the number of times it appears with negative polarity. tote imbalanceof ¢ is ¥ ; Im; and the
normalized imbalancef ¢ is (1/3m) 3L, Im;.

If the normalized imbalance a@f is bounded by, then¢ is d-balanced

Definition 3.5. A 3CNF formula¢ has the(1— &) 3XOR property if for every assignme#, if A
satisfiesp as 3CNF, then at least-1¢ fraction of the clauses are satisfied as 3XOR.

Definition 3.6. A graph is said to have &-cut if there is a partition of its vertices into two disjoint sets
such that at least &-fraction of the edges cross this partition.

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 31

http://dx.doi.org/10.4086/toc

URIEL FEIGE AND ERAN OFEK

Algorithm Refute (¢’)

1. Certify that¢’ has theg(1— y) 3XOR property. Specifically:
(a) Find the normalized imbalance @fand denote it by'.
(b) Certify thatGy has no(3 + ¢')-cut (¢’ is returned by a subroutine).
Sety = 3(5'+2¢').

2. Certify thatGdz),eq has no(} + ¢)-cut (¢ is returned by a subroutine).

3. Ife+2y< % return “unsatisfiable,” otherwise return “don’t know.”

In steps 1(b) and 2 of Refut¢’) we use as a blackbox a subroutine for bounding the maximum cuts
in Gy andG3, ™. This subroutine is explained fheorenB. 10

We first show that Refut@’) is sound, i. e., whenever it returns “unsatisfiable” it holds tiatan
not be satisfied. This follows fronemma3.8 andTheorem3.7.

Theorem 3.7 (Soundness)Let¢’ = (¢1, ¢2) be a 3SCNF formula composed of pairs of matched clauses.
Denote by %‘?q the graph induced by’ as described iDefinition3.3. The formulap’ is not satisfiable
if all the following conditions hold:

1. ¢’ has the(1— y)3XOR property,
2

2. Gy 'has no(3 +&)-cut,

3. e+2y<i.

Proof. We shall show that ip’ is satisfiable and has tti& — y)3XOR property, thelGé‘?q has a(1—2y)-

cut. Combined with the fact tha;?q has no ¥2+ ¢ cut we derive a contradiction (sineet 2y < 1/2).

Consider the cut induced on the verticesﬂifq by a satisfying assignme#t (where in one side there

are all the literals whose value is true and in the other side there are all the literals whose value is false).
A(x) denotes the value of the literainduced by the assignmeft By the 3XOR property od’, all buty

fraction of the clauses af’ are satisfied as 3XOR clauses. Hence at legst-a2y) fraction of the pairs

of matched clauses have both clauses in the pair satisfiddagsy3XOR. Let(x,w, ¢), (y,w,¢) be a pair

such that bottix, w, ¢) and(y,w, ¢) are satisfied as 3XOR. It holds tha&t{x) + A(y) + 2(A(w) + A(¢)) =

0 mod 2. Thus exactly one of the literadsyis true and the other is false (under the assignmgnand

the edgdx,y) induced by this pair of clauses crosses the cut. It then follows that at lea&y fraction

of the edges irGifq are cut edges. O

Lemma 3.8 (The3XOR lemma). Let¢ be a 3CNF formula. If the following hold:
1. ¢ is 6-balanced, and

2. the graph (induced by) G, has no(3 +¢)-cut,

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 32

http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

then¢ has the(1— 3(8 + 2¢))3XOR property.

Proof. The proof of this lemma appears ifi|] also a similar version of this lemma (for denser random
2kCNF formulas) appears irp]. We repeat the proof for the sake of self-containment.

Denote bym the number of clauses i and letA be a satisfying assignment. We bound from
above the number of satisfied appearances of literals. The assignment which maximizes the number
of satisfied appearances of literals is the 'majority vote’: a varialikeassigned 'true’ iff it appears
more times with positive polarity than with negative polarity. Using this assignment the total number
of satisfied appearances§$3m+ Z{Lllmi) (wherelm; denotes the imbalance of varial)elt follows
that on average each clause is satisfied at fiast- 57, Im; = 3(1+ §) times.

A clause is satisfied as 3AND lyif all its literal are satisfied byA. We next show that the fraction of
clauses satisfied bias 3AND is at least 14 — 3¢ /2. Equivalently it is enough to show that the fraction
of clauses satisfied as 3NAE, denotedfyis at most 34+ 3¢/2 (sinceA is a satisfying assignment).
Consider the grap@, induced byy. We remind the reader that each clause ebntributes a “triangle”
of 3 edges tdG, (e.g., the clauséx,y,z) contributes the edgex,y), (Y, 2),(x,2)). Consider the cut
induced by the satisfying assignmekt Each clause satisfied as 3NAE contributes exactly 2 edges to
the cut, thus this cut has at leagird edges. BuiG, has no(1/2+ €)-cut. It follows that Bm <
(1/2+ €)3m, giving < 3/4+ 3¢/2 as needed.

It remains to show that all but a small fraction of the clauses are satisfied as 3X@R bgnote
by a1, o, az the fraction of clauses which are satisfied exactly once, exactly twice and exactly 3 times
respectively g?;l o; = 1). We already know thadiz > 1/4— 3¢ /2 and that each clause is satisfied at
most 32+ o times on average, thus

3(1+6)
2

>3-03+2-00+1-aq .

Substitutingon = (1— oz — a2) andag with 3 — 3¢ yields thate, < 3(5 + 2¢). O

The following two Theorems show that our refutation algorithm refutes most formtﬂa:sCﬁ’ﬁ/ 2

Theorem 3.9. For anye > Othere is a constant & c(¢) such that w.h.p. over the choice@tr Cﬁ”g/z:
(a) the subformulay’ is e-balanced, and
(b) each of the graphs g and ijq has no(3 + ¢)-cut.

Itis well known and follows from standard probabilistic calculations that a random graph (with large
enough average degree) hag g2+ ¢)-cut, and that a random formuladsbalanced. The distributions
of ¢/, G4 are close enough to the standard models of random formulas/graphs respectively, so that the
proof techniques used for the random cases can be applied also in our case. The phmafrem3.9
is deferred tdSectiond.2

Theorem 3.10.There is a polynomial time algorithm that finds the imbalance of a 3CNF formula. There
is a polynomial time algorithm that for every graph G that has(éGJr €)-cut, certifies that G has no
(3 + 6)-cut, whered(e) — O ase — 0.

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 33

http://dx.doi.org/10.4086/toc

URIEL FEIGE AND ERAN OFEK

Proof. Finding the normalized imbalance of a formupais done by counting positive and negative
appearances for every variable, computing its imbalance and averaging.

An algorithm for certifying a bound on the maximum cut of a graph is givenl#).[Given a
graph withm edges whose maximum cut is boundechiit /2 + €) this algorithm produces a proof that
the input graph has no cut of cardinality1/2+ o). This algorithm has the property thét— 0 as
e—0. O

Corollary 3.11 (Almost-completeness)For sufficiently large constant ¢, the refutation algorithm w.h.p.
returns “unsatisfiable” for a random formula €g Cﬁrﬁ/z.

Proof. Using Theorem$.9, 3.10we will show that by taking to be a sufficiently large constant, the
termse,y from Refuté¢’) can be made arbitrary small (and thaig- 2y < 1/2). The termy equals

(3/2)(8’ + 2¢’) whered’ is the imbalance 0§’ and(1/2+ ¢’) is the bound returned by the algorithm
of [16] when applied toG,. By Theorem3.9, 6’ — 0 asc increases. Furthermore, the value of the

maximum cut in botlG, Gﬁ?q approaches /R ascincreases. It then follows, usiriheorem3.10Q, that

the bounds 12+ ¢’ and 3/2+ ¢ returned by the certification algorithm (df]) applied toG, andGifq,
respectively, can be made arbitrary close t@ by settingc to be a sufficiently large constant.
O

4 Proofs ofLemma 3.1and Theorem 3.9

4.1 Proof ofLemma3.1l

Proof ofLemma3.1 For two random clauses the probability that they induce a matched pair of clauses

IS
L1001 1

P~ onon—2" a
Thus, the expected number of pairs that match is
cn?/2 c2n® 1 n
“—< 2>pN24nZN8' *1)
Let X denote the number of pairs of clausespithat match. We use the second moment to show that
w.h.p.X ~ u. By Chebyshev’s inequality

PrIX —u| > eu) < \/:l;fj(z) . 4.2)
For every two clause locations§n(e.g., first clause and third clause) we set an indicator random variable
X(@i=12,.., (C”;/z)) to be 1 if the respective two clauses match and otherwise Q. Fqgrwe say that

i ~ j if the pairi and pairj share one clause location, and otherwigej. (Note that if pairi and pairj
share two clause locations, thea j. Note also that ~ j might share the same clause without sharing
a clause location, if a certain clause happened to appear twicé For any fixed we let

A=Y PIXj[X] (4.3)

IRy

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 34

http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

¢ From symmetrny)* does not depend dn

Var(X) = E [X?] - i = E[(%)?] - u? :E[z&%;ﬁxj] 2
0 [17)

=u—u2+; PIIXiXj] = u— 2+ PrX] <z PriXjl+ > PrX; | X,-]>
iz] e J 7~
<p—pt+y POX]Y PAX]+ Y PIX] 5 PrX | X]

I] [Jo g~ -
u?

=p+ Y PX]A" = u(1+47) . (4.4)

Substituting VafX) with u(1+ A*) in inequality @.2) we derive
n(l+4%) 1+A*

PH|X —u| > eu] < 22 = ey (4.5)
Thus, sinceu = @(1), it suffices to show thah* = o(u). It holds that
A <2(cn®?—2)p=o(u) . (4.6)

So far we showed that w.h.X ~ u. Note thatX may over-count the number of matched pairgin
The reason is that in there are expected to be sets of three or more clauses in which any two clauses
match. From each such set, Exti@cttakes tog’ only the first two clauses of the set.
Fori > 3, we call a set of clausesdadif each two clauses of the set match. ¥ebe the number of
bad sets of sizein ¢. The number of matched clausespifis at leastX — 33 ('Z)Y. Thus, in order to
show that the number of matched pairsiris ~ u it is enough to prove that

3, ()] -om

Then, using Markov’s inequality we derive that w.h{y. 3 ('Z)YI =o(u). Itholds

- Q2)

Thus, the suny =3 E[(})Y] is bounded by the sum of a geometric sequence whose firstiierr8)(is
o(u). It follows thatE 5~z (5) Y] = o(u).

O]

4.2 Proof of Theorem3.9

Let P C C, x Gy be the set of all possible matched pairs of clauses, am¥lbe the set of alin-tuples of
matched pairs of clauses. For a pair of matched clajggesy) € P, theinducing pairis the pair formed

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 35

http://dx.doi.org/10.4086/toc

URIEL FEIGE AND ERAN OFEK

by the second and third literals in each of the two matched clayses Let m denote the number of
matched pairs of clauses ¢ri. Note thatp’ € P™, however not all the elements Bf" are in the support
of ¢’. We denote b>(§]) C P™the support ofy’, i. e., the collection of all (orderedi) matched pairs for
which every matched pair of clauses has a distinct inducing pair. We claim'tima random element

of (7).

Lemma 4.1. Given thatp’ has m matched clauses, the set of inducing pairs is a random set of m different
ordered pairs of literals (each pair has two distinct literals).

Proof. LetC denote the set of clauses that have a matching clause (from the original fgrm@lanote

by L the set of inducing pairs, i.e., pairs that participate as the second and third literal in one of the
clauses oC. The setl. may be any set of distinct ordered pairs of sizeBy symmetry, any such set is
equally likely to beL. The explanation is as follows. Assume we expose the indices of the clauSes in
and also the partition d into equivalent classes (each equivalent class is a maximal set of clauses that
have the same second and third literals). Given this information, for each chdiceahaf probability

thatL is the set of inducing pairs is the same (for &nghe number of ways to match the pairslofvith

the equivalent classes is the same; additionally, the probability for all other clausesiwt &void all

the pairs ofL in the second and third literals is the same). O

Proof of TheorenB.9. ¢ From here on we will assume thmis a fixed number and that ~ ¢?n/8 (this

is justified byLemma3.1). The formula¢’ is a random element oﬁr':]) Let ¢” er P™ (i.e., ¢" is
composed ofn random and independent samples frBjn Denote byQ’ the event that every matched
pair of clauses i®” has a distinct inducing pair. Conditioned &, ¢” has the distribution 0d’. As
Lemma4.2 shows, the ever®’ is not too rare (the proof diemma4.2is deferred to the end of this
section).

Lemma 4.2. Let m= . For ¢" g P™ it holds thatPr[Q'] > e~¢"/128
Furthermore, akemma4.3 statesG,« is unlikely to have a large cut.
Lemma 4.3. Let m~ ig”. For ¢” g P™ with probability 1 — o(1) it holds that G has no(3 + 2)-cut.

Combining Lemmag.2 4.3we now show thaGy is unlikely to have a large cut. The reasoning is as
follows:

Pr [Gy has(i+2)cuf = Pr [Gy has(i+2)cut|Q 4.8
¢’6R(§;)[¢ (3+32)cut ¢~eRPm[0 (3+3)cut| Q] (4.8)
Prys[Gyr has(3+2)cuf o(1)
< = .
= Pr¢// [Q/] — e702/128 0(1) ? (4 9)

where the last equality is becausis a fixed constant.
A similar argument shows that if w.h.p‘;';‘?,q has no(1/2+ ¢)-cut andg” is e-balanced, then w.h.p.

Gé? has no(1/2+ ¢)-cut and¢’ is e-balanced. Hence, we only need to prove the following lemmas.

Lemma 4.4. Let m~ SN For ¢” eg P™ with probability 1 — o(1) it holds that C%’?,q has no(3 + 2)-cut.

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 36

http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

Lemma 4.5. Let m~ &. For ¢” €g P™, with probabilityl — o(1) it holds that¢” is 2-balanced.

To complete the proof cfheorem3.9we now give the proofs of Lemmas3, 4.4, 4.5, and4.2

Proof ofLemma4.3. Fix a partition(V1,Vz) of the vertices of54.. We denote by, (V1,V2) the num-
ber of edges crossing the c(My,V>) in Gy». For ¢” g P™ the expectation ofVy»(V1,V2) is at most
6m(1/2+1/n). For any formulap” € P™ we let f(¢”) be equal toN,~ (V1,V2). Let X; be the expected
value of f after exposing the firstpairs of ¢” (for i = 0,1,...,m). The sequenc&p, X1,...,Xm is a
martingale. The following two facts:

1. for any ¢” € P™, changing one matched pair (an elemenPptan change the value dfby at
most 4 (each clause forms a triangle that contributes at most 2 edges to the cut), and

2. ¢” is taken from a product measup&,

imply that for everyi it holds that|X; — Xi+1| < 4 (see Theorem 7.4.1 froni]). Azuma’s inequality

implies that for anyl > 0
22

Pif(¢”)—b6m(3+31)>A] <e a2 .
SettingZ = 1™ and usingm ~ & we derive

Pr [W¢//(V17V2) > 6m(%)} <2 Lin .
d)l/eRPm
Using the union bound over all possible cuts we derive that w.h.p ¢(farr P™) the graphG,» has no
(3+32)-cut.
O

The proof ofLemmad4.4is very similar to the proof okemma4.3, details are omitted.

Proof ofLemma4.5. We first bound the expected imbalancedf The total imbalance af” is bounded

by the sum of the imbalances of, ¢, (where¢,/¢, are formed by taking the first/second clause from
each matched pair af”). Since¢, has the same distribution @i, it is enough to bound the expected
total imbalance o6, (and then multiply by two). The total imbalancedfis the sum of the imbalances
of all variables ingy, i.e., 3, Im; (the imbalance of; in ¢ is denoted bym).

For any variable we denote byd; the number of appearancesoin ¢1. For ¢” €g P™ it holds
thaty ; E[di] = 3m. By symmetry, for every it holds thatE[d;] = 3m/n. We denoted £ 3m/n. Given
thatd; = k the polarities of the appearancesxpfire still random. Given that; = k, the imbalance of
X; is the absolute value of the sumloindependent random variables, where each random variable has
probability 1/2 of being 1 and probability /2 of being—1. HenceE[Im? | d; = k] = k. It then follows
that

ZPr E[Im? | di =K = ZkPrd.—k] Eld]=d , (4.10)

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 37

http://dx.doi.org/10.4086/toc

URIEL FEIGE AND ERAN OFEK

where all probabilities and expectations are taken @veer P™. Using the convexity of the square

function
E[lm] < /E[lm?] < Vd . (4.11)

So far we showed thak g cqpm [z{‘zllmi} < n/d. Thus, for¢” eg P™ the total imbalance od” is
expected to be less thamyd. We will now show that the total imbalance ¢f' is not likely to be
too large relative to @/d. For any¢” € P™ we let f(¢”) be the total imbalance af’. Changing one
matched pair of clauses i’ changes the total imbalance ¢f by at most 12. Azuma'’s inequality

implies that for anyA > 0
2

[f(¢”)—2nVd > A] <& mz .

¢/16Rpm

SettingA = nv/d and usingd = 3m/n we derive

, PrP [the total imbalance of” > 3nvd] < e % .
IIeR m

It then follows that the normalized imbalance @ is w.h.p. bounded byr,/d/6m < 3/c (using
m~ ¢?n/8 andd = 3m/n). O

Proof ofLemma4.2. We generat@” iteratively by choosing each time (independently) a random ele-
ment of P. For each new random element®f the probability for it to have an inducing pair which
is different from all previous inducing pairs is 1 — m/N, whereN = 2n- (2n— 2) is the number of
possible inducing pairs. It then follows that with probability of at least

m A\ @
LU R e m) S ocf/128
<l 2n(2n—2)> > exp(—m(eym)) = @ !

each of the matched pairs iff" has a distinct inducing pair. Inequality (1) is because x> e
holds for everyx € [0,1/2]. The constant in the exponent following Inequality (2) is derived by taking
m=c?n/8. O

5 Practical considerations for the refutation algorithm

Recall that our refutation algorithm extracts frafma subformulag’ that contains matched pairs of
clauses, and then refutés The longerg’ is, the easier it is to refute it. For simplicity, we matched a

pair of clauses only if they agreed on their last two literals. Moreover, every clauspaficipated in

at most one pair of matched clausespin even though a clause may be eligible to participate in more
than one matched pair. In practical implementations, it is advantageous not to have these restrictions,
and thus get a longer formutg. In particular, we may allow the same clause to participate in several
pairs of matched clauses, by duplicating it. More importantly, we may match any two clauses that share
two variables (regardless of the polarity of the variables, and of their location within the clauses). For
example, the two clauség, w, /) and(w, ¢,y) can be matched. i’ is satisfied by an assignmehthat

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 38

http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

has the 3XOR property, then one step of Gaussian elimination gives in this\case A(w) + A(¢) +

A(Y) +A(w) + A(¢) = 0 mod 2, thusA(x) + A(y) = 1 mod 2. Hence, we will associate the edgey)

with this pair of matched clauses so that the edge induced by this paff frwill cross the cut which
corresponds to the assignme¥t Using the principles above, the number of pairs of matched clauses
that one expects to extract from a random formula of leeg#? is roughly (3°23/2) /(5) ~9cn.

We used the principles above to implement the algorithm in practice. In the current implementa-
tion, the problem of refuting’ is reduced to strong refutation of two 2XOR formulas. We performed 2
eigenvalue computations on matrices of sizen, whereas the original refutation algorithm performed
eigenvalue computations on matrices of sime<2n. Our implementation uses the conditionsldfeo-
rem5.2to refute¢’. Before statingrheoremb.2we need the following definition.

Definition 5.1. Let ¢ be a 2XOR formula withm clauses anah variables. A, is the followingn x n
symmetric matrix associated with Initially A, is the zero matrix. For each clause of the forfrg/)
or (x,y) we add+1 to positionsA(x,y) andA(y,x). For each clause of the fornfg,y) or (x,y) we add
—1 to positionsA(x,y) andA(Y, X).

A similar matrix can be defined for a 2EQ formula, just by reducing the 2EQ formula into a 2XOR
formula.

Theorem 5.2. Let ¢’ be a 3CNF formula with m pairs of matched clauses and n variablespigtbe

the 2XOR formula witlbm clauses induced by replacing each 3CNF clausf bfy three 2XOR clauses
(one for every two literals). Lefq be the 2EQ formula with m clauses induced by adding pairs of
matched clauses modubb If the following hold ther’ is not satisfiable:

(1) ¢’ is 6-balanced.

(2) LetAxxor, A2eq denote the largest eigenvalues gf A, Ay, respectively; then
36+ - (Apwor+ Azeq) <
am 2xor 2eq 2 -

The proof ofTheoremb.2 will follow shortly.

Lemma 5.3 (2XOR strong refutation). Let ¢ be a 2XOR formula with m clausesAlfis the maximum
eigenvalue of Atheng is at most(% + €) satisfiable, fore = %an-

Proof. Let T be an assignment satisfying the most clauses as 2XORx hetthe+1 vector which

corresponds to T equals+1 if T(i) = true, otherwiseg = —1. It holds that{Asx = Ay e xX (where

for any two matricesA, B of the same dimensiongye B = 3, ;A(i, j)B(i, j)). Every 2XOR clause
satisfied by T contributes 2 t&, e xX whereas every unsatisfied clause contribut@s If T satisfies
exactly(1/2+ e)mclauses, then

Xt)?ix _ (%+s)m(+2):(§—8)m(—2) _ em/n . (5.1)

SincextAyx/xx < A we derivee < An/4m.

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 39

http://dx.doi.org/10.4086/toc

URIEL FEIGE AND ERAN OFEK

Lemma 5.4 (3XOR property certification). Let ¢ be a 3CNF formula which i$-balanced with m
clauses and n variables. Assume that the 2XOR formula induced by replacing each 3CNF clause by
2XOR clauses is at mo&} + y) satisfiable. Thew has the(1— 3(5 +2y))3XOR property.

Proof. Assume that the assignment T satistiess 3CNF. Denote by; the number of clauses satisfied
exactly once, twice, three times respective}f;(1L a; = 1). We need to upper bourwb. It can not be
that oz is too small, as in such case there are many satisfied clauses in the induced 2XOR formula: if a
clause ofp is satisfied exactly once or exactly twice, then out of the three 2XOR clauses induced by it,
two are satisfied as 2XOR. Since the number of satisfied 2XOR clauses (in the induced 2XOR formula)
is bounded by 81(1/2+ 7y), we derive (o + a2) < 3m(1/2+ y), or equivalentlyoz > 1/4 — 3y/2.
The imbalance o is bounded by, thus the number of satisfied literalsgris at mos§(1+ o)m. This
implies

3(1+9)

> o + 200 + 0.

2
Using the factsoy = 1— o — az and oz > ;11 — %ywe deduce

NIlw

(1+8) > o +1+2(3 - 3y), (5.2)

and thus3 (8 +2y) > ay. O

Proof of Theorenb.2. Assume thatp’ is satisfiable as 3CNF. We show that property (1) contradicts
property (2). Set

Exxor = izxg;:) and €2eq = Ajjgn-
By Lemmab.3 @axor and ¢oeq are at mostl/2+ exor) and(1/2+4 e2eq) satisfied, respectively . It then
follows, usingLemmab.4, that¢’ is (1— (3/2)(6 + 2exor)) Satisfied as 3XOR. Each pair of matched
clauses ofy’ for which both clauses are satisfied as 3XOR yields a satisfied 2EQ clayisg.oks ¢2eq
is at most(1/2+ ex¢q) Satisfied, we conclude that

3(0 + 2e2x0r) + €2eq >

1+ e Or equivalently (5.3)
: (5.4)
Substitutingeaxor andenyor according to the definitions irbf we derive
36+ 4 (Ao + A2eq) 2 §
m

which contradicts property (2). O

We generated several random formulas with 5- 10* variables and 27335932 [2.445. n®/?] clauses.

Our algorithm refuted all of them (our current implementation fails to refute formulas of significantly
lower clause density). We give more detailed results for one specific (though typical) run. Our algorithm
extracted a subformulé’ with m = 2689832 pairs of matched claus@sble 1l summarizes the values
computed by the algorithm along with a heuristic estimation of what we could have expected them to
be.

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 40

http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

] | m | Aeq | Ao | 6] Bound \
Algorithm 2689832| 20.8961| 54.6503 | 0.048662 0.49706< %
Heuristic bound:| 2690112| 20.7454| 50.8157 | 0.05565 0.49946< 3
(using formula) | ~9¢®n | 2v18c2 | 2v10&2 | /& | 2 (Ageqt Azxor) +38

Table 1: Results for a random formula with BY variables and 27335932 clauses.

Let us explain the heuristic bounds used in the table. To estimate the largest eigenvalue of a sym-
metric matrix we use the formula/a whered is the averagé; norm of each of the rows. This bound
is known to be true for various random graph models, but apparently is too optimis#g,for To
estimate the imbalanaewe assume that each variable appears exaotjn@imes, each time with ran-
dom polarity. The difference between the number of positive and negative appearances behaves like the
distance from 0 when performing a random walk of lengtty 6 on Z (starting from 0). The expected
square of the distance isrn, and,/6m/nis an upper bound on the expected distance. We estimated
the expected normalized imbalancenggbm/n/6m= ,/n/6m.

A few words about the implementation of our algorithm. The part of extracting the subformula
¢’ was implemented in C. The other parts (computing the imbalance and the eigenvalues) were imple-
mented in Matlab. To save memory we used Matlab’s sparse matrix objects. The heavy part of the
algorithm was computing the largest eigenvalues of the two matAggs, Ay,.,. This part took 63
minutes on an Intel Xeon CPU 1700MHz with 256K cache and 2Gbyte memory (running the Linux
operating system).

It may be interesting to see if other refutation algorithms (which may use various optimized versions
of resolution, OBDDs, backtracking, to name a few of the common algorithmic principles used for
refutation) can handle random formulas with as many variables as those handled by our algorithm. We
have not made a serious attempt to check this.

Acknowledgements

This research was supported by a grant from the G.I.F., the German-Israeli Foundation for Scientific
Research and Development. We thank Amin Coja-Oghlan for useful discussions.

References

[1] * N. ALON AND J. SPENCER The Probabilistic MethodJohn Wiley and Sons, 20021.2

[2] * E. BEN-SASSON AND A. WIGDERSON Short proofs are narrow— resolution made simgle.
ACM, 48(2):149-169, 2001.JPCM:10.1145/375827.3758R51

[3] * V. CHVATAL AND E. SZEMEREDI: Many hard examples for resolutioh. ACM 35(4):759-768,
1988. PACM:10.1145/48014.48016 1

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 41

http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#AlonSp02
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#Ben-SassonWi01
http://doi.acm.org/10.1145/375827.375835
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#ChvatalSz88
http://doi.acm.org/10.1145/48014.48016
http://dx.doi.org/10.4086/toc

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

URIEL FEIGE AND ERAN OFEK

* A. CoJA-OGHLAN, A. GOERDT, AND A. LANKA: Strong refutation heuristics for ran-
dom k-SAT. Combinatorics, Probability and Computing.6(1):5-28, 2007. Conference ver-
sion appeared in Proc. 8th Internat. Workshop on Randomization and Computation (RANDOM
'04), volume 3122 of LNCS, pp. 310-321. Springer, 20040i{L0.1017/S096354830600784X
Springer:x1tlgm3cexgj 1

* A. COJA-OGHLAN, A. GOERDT, A. LANKA, AND F. SCHADLICH: Techniques from combina-
torial approximation algorithms yield efficient algorithms for randdgrsat. Theoretical Computer
Science329:1-45, 2004.7CS:10.1016/).tcs.2004.07.(JL71, 2.4, 3

* U. FEIGE: Relations between average case complexity and approximation complexityodn
34th STOCpp. 534-543. ACM Press, 200 T0OC:509907.509985 1, 2.4, 3

* U. FEIGE AND E. OFEkK: Spectral techniques applied to sparse random gradpagsdom Struc-
tures and Algorithms27(2):251-275, 2005HSA:10.1002/rsa.200$49 1, 2.3, 2.4

* E. FRIEDGUT AND J. BOURGAIN: Sharp thresholds of graph properties, and the k-sat prob-
lem. Journal of the American Mathematical Society?(4):1017-1054, 1999.JAMS:1999-12-
04/S0894-0347-99-00303-71

* J. FRIEDMAN, A. GOERDT, AND M. KRIVELEVICH: Recognizing more unsatisfi-
able random 3-sat instances efficiently. SIAM J. on Computing 35(2):408-430, 2005.
[SICOMP:10.1137/S009753970444096XL, 2.4

* A. GOERDT AND M. KRIVELEVICH: Efficient recognition of random unsatisfialkeSAT in-
stances by spectral methods. Pmoc. Ann. Symp. on Theoretical Aspects of Computer Science
(STACS '01)volume 2010 olLNCS pp. 294-304. Springer, 2001STACS:27crOlrbpr7px7yJ3
1,24

* A. GOERDT AND A. LANKA: Recognizing more random 3-sat instances efficiently. LICS’03
Workshop on Typical Case Complexity and Phase Transitions, 2003.4

* M. HAJIAGHAYI AND B. SORKIN: The satisfiability threshold of random 3-SAT is at least 3.52,
2003. prXiv:math/0310198 1

* S. ANSON, Y. STAMATIOU, AND M. VAMVAKARI : Bounding the unsatisfiability threshold of
random 3-sat.Random Structures and Algorithps7(2):103-116, 2000. R[SA:10.1002/1098-
2418(200009)17:2j103::AID-RSA2,,3.0.CO;R-R

* A. KAPORIS, L. KIROUSIS, AND E. LALAS: The probabilistic analysis of a greedy satisfiability
algorithm. Random Structures and Algorithn8(4):444-480, 2006.HSA:10.1002/rsa.20104
1

* S. KHOT: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique. In
Proc. 45th FOCSpp. 136-145. IEEE Computer Society, 20080[CS:10.1109/FOCS.2004159
1

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 42

http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#CojaGoLa07
http://dx.doi.org/10.1017/S096354830600784X
http://springerlink.metapress.com/link.asp?id=x1tlgm3cexcj
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#CojaGoLaSc03
http://dx.doi.org/10.1016/j.tcs.2004.07.017
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#Feige02
http://portal.acm.org/citation.cfm?id=509907.509985
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#FeigeOf05
http://dx.doi.org/10.1002/rsa.20089
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#FriedgutBo99
http://www.ams.org//jams/1999-12-04/S0894-0347-99-00305-7
http://www.ams.org//jams/1999-12-04/S0894-0347-99-00305-7
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#FriedmanGoKr05
http://dx.doi.org/10.1137/S009753970444096X
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#GoerdtKr01
http://springerlink.metapress.com/link.asp?id=27cr0lrbpr7px7y3
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#GoerdtLa03
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#HajiaghayiSo03
http://arxiv.org/abs/math/0310193
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#JansonStVa00
http://dx.doi.org/10.1002/1098-2418(200009)17:2<103::AID-RSA2>3.0.CO;2-P
http://dx.doi.org/10.1002/1098-2418(200009)17:2<103::AID-RSA2>3.0.CO;2-P
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#KaporisKiLa03
http://dx.doi.org/10.1002/rsa.20104
http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#Khot04a
http://doi.ieeecomputersociety.org//10.1109/FOCS.2004.59
http://dx.doi.org/10.4086/toc

EASILY REFUTABLE SUBFORMULAS OF LARGE RANDOM3CNFFORMULAS

[16] * U. Zwick: Outward rotations: a tool for rounding solutions of semidefinite programming re-
laxations, with applications to MAX CUT and other problems.Pimoc. 31st STOpp. 679-687.
ACM Press, 1999.9T7T0C:301250.301431 2.3, 2.4,3,3

AUTHORS

Uriel Feige[About the author]
Microsoft Research
One Microsoft Way
Redmond, WA 98052-6399
and
Weizmann Institute of Science
Rehovot 76100, Israel
urifeigeemicrosoftcom
uriel.feigeeweizmannacil
http://www.wisdom.weizmann.ac.il/“feige

Eran Ofek{About the author]

Department of Computer Science

and Applied Mathematics

Weizmann Institute of Science

Rehovot 76100, Israel
eranofekeweizmannacil
http://www.wisdom.weizmann.ac.il/ erano

ABOUT THE AUTHORS

URIEL FEIGE is a member of théheory groupat Microsoft Research, currently on leave
from the \Weizmann Institute His main research interests involve studying the border-
line between P and NP as it manifests itself in approximation algorithms, heuristics,
and exact algorithms that are not necessarily polynomial time. Other activities he en-
joys include playing the piano, dancing with his wife, and helping his kids with their
homework.

ERAN OFEK obtained his Ph. D. in Computer Science fromtkieizmann Institute of Sci-
encein 2006. His Ph.D. and M. S. advisor wakiel Feige His research interests
include optimization algorithms, random structures, and average case complexity. On
his spare time he likes to play soccer, volleyball, or spend time with his two sons.

THEORY OF COMPUTING, Volume 3 (2007), pp. 25-43 43

http://theoryofcomputing.org/articles/main/v003/a002/bibliography.html#Zwick99
http://portal.acm.org/citation.cfm?id=301250.301431
http://www.wisdom.weizmann.ac.il/~feige
http://www.wisdom.weizmann.ac.il/~erano
http://research.microsoft.com/theory/
http://www.wisdom.weizmann.ac.il/
http://www.weizmann.ac.il/
http://www.weizmann.ac.il/
http://www.wisdom.weizmann.ac.il/~feige
http://dx.doi.org/10.4086/toc

	Introduction
	Preliminaries
	The random model
	Notation
	Efficient certification of a property
	An overview of our refutation algorithm

	The refutation algorithm
	Proofs of Lemma 3.1 and Theorem 3.9
	Proof of Lemma 3.1
	Proof of Theorem 3.9

	Practical considerations for the refutation algorithm
	References

