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Abstract: A simple nonconstructive argument shows that most 3CNF formulas withcn
clauses (wherec is a sufficiently large constant) are not satisfiable. It is an open question
whether there is an efficient refutation algorithm that for most formulas withcn clauses
proves that they are not satisfiable. We present a polynomial time algorithm that for most
3CNF formulas withcn3/2 clauses (wherec is a sufficiently large constant) finds a subfor-
mula withΘ(c2n) clauses and then uses spectral techniques to prove that this subformula
is not satisfiable (and hence that the original formula is not satisfiable). Previously, it was
only known how to efficiently certify the unsatisfiability of random 3CNF formulas with
at least poly(log(n)) ·n3/2 clauses. Our algorithm is simple enough to run in practice. We
present some experimental results.
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1 Introduction

A 3CNF formulaφ overn variables is a set ofm clauses, each one contains exactly 3 literals of three
different variables. A formulaφ is satisfiable if there exists an assignment to itsn variables such that in
each clause there is at least one literal whose value is true. The problem of deciding whether an input
3CNF formulaφ is satisfiable is NP-hard, but this does not rule out the possibility of designing a good
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heuristic for it. A heuristic for satisfiability may try to find a satisfying assignment for an input formula
φ , in case one exists. A refutation heuristic may try to prove that no satisfying assignment exists. In this
paper we present an algorithm which tries to refute an input formulaφ . The algorithm has one sided
error, in the sense that it will never say “unsatisfiable” on a satisfiable formula, but for some unsatisfiable
formulas it will fail to output “unsatisfiable”. It then follows that for a formulaφ on which the algorithm
outputs “unsatisfiable,” its execution onφ is a witness for the unsatisfiability ofφ .

How does one measure the quality of a refutation heuristic? A possible test may be to check how
good the heuristic is on a random input. But then, how do we generate a random unsatisfiable formula?
To answer this question we review some known properties of random 3CNF formulas. The satisfiability
property has the following interesting threshold behavior. Letφ be a random 3CNF formula withn
variables andcn clauses (each new clause is chosen independently and uniformly from the set of all
possible clauses). As the parameterc is increased, it becomes less likely thatφ is satisfiable, as there
are more constraints to satisfy. In [8] it is shown that there existscn such that forc < cn(1− ε) almost
surelyφ is satisfiable, and forc > cn(1+ ε), φ is almost surely unsatisfiable (for someε which tends to
zero asn increases). It is also known that 3.52< cn < 4.596 [14, 12, 13]. We will use random formulas
with cnclauses (forc> cn(1+ε)) to measure the performance of a refutation heuristic. Specifically, the
refutation heuristic is considered good if for somec > (1+ ε)cn it almost surely proves that a random
formula withcnclauses is unsatisfiable.

Notice that for anyn, asc is increased (forc > cn(1+ ε)), the algorithmic problem of refutation
becomes less difficult since we can always ignore a fixed fraction of the clauses. The following question
is still open: how small canc be so that there is still a polynomial time algorithm which almost surely
refutes random 3CNF formulas withcnclauses (c may also be an increasing function ofn).

A possible approach for refuting a formulaφ is to find a resolution proof for the unsatisfiability of
φ . In this approach one derives new clauses implied byφ by combining pairs of clauses in which one
clause contains a variable and the other clause contains the negation of this variable. Any satisfying
assignment must satisfy at least one of the remaining literals contained in the two clauses, and hence the
collection of these literals is a CNF clause implied byφ . A sequence of iterations of this resolution step
that eventually generates the empty clause is a proof thatφ is not satisfiable. Chv́atal and Szemerédi [3]
proved that a resolution proof of a random 3CNF formula with linear number of clauses is almost surely
of exponential size. A result of a similar flavor for denser formulas was given by Ben-Sasson and
Wigderson [2] who showed that a random formula withn3/2−ε clauses almost surely requires a resolution
proof of size 2Ω(nε/(1−ε)). These lower bounds imply that finding a resolution proof for a random formula
is computationally inefficient.

A simple refutation algorithm can be used to refute random formulaφ with n2 clauses. This is done
by considering only those clauses that contain a particular variablex. Fixing x to be true leaves about
half of the selected clauses as a random 2CNF formula with roughly 3n/2 clauses. A 2CNF formula
with this number of clauses is almost surely not satisfiable. Moreover, any polynomial time algorithm
for 2SAT can be used to certify that this particular sub-formula is not satisfiable. The same can be done
when fixingx to be false, implying that no matter howx is assigned, the formulaφ cannot be satisfied.

A new approach, introduced by Goerdt and Krivelevich in [10], gave a significant improvement and
reduced the bound to log7n ·nk clauses for efficient refutation of 2kCNF formulas. This approach was
later extended in [9] and [11] to handle also random 3CNF formulas withn3/2+ε and poly(logn) ·n3/2
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clauses, respectively. In [5, 7] it is shown how to efficiently refute a random 2kCNF instances with at
leastcnk clauses.

The difficulty of finding refutation algorithms for formulas with linearly many clauses may lead
one to assume that no such algorithm exists. It is shown in [6] that this assumption (that there is no
polynomial time refutation heuristic that works for most 3CNF formulas withcn clauses, wherec is an
arbitrarily large constant) implies that certain combinatorial optimization problems (like minimum graph
bisection, the 2-catalog segmentation problem, and others) have no polynomial time approximation
schemes. It is an open question whether it is NP-hard to approximate these problems arbitrarily well,
though further evidence that these problems are indeed hard to approximate is given in [15].

Our refutation algorithm is based on techniques similar to those used in earlier work, such as [9, 5, 6].
We use these techniques in a different way, resulting in an algorithm that is easier to implement, easier
to analyze, and works at lower densities than previous algorithms. For example, both the algorithms
in [9, 11] and our algorithm perform eigenvalue computations on some random matrices derived from
the random input formulaφ . However, our matrices are much smaller (of ordern rather thann2),
making the computational task easier. Moreover, the structure of our matrices is simpler, making the
analysis of our algorithm simpler, and easier to apply also to formulas with fewer clauses than those
in [9, 11]. As a result of this simplicity, we can show that our algorithm refutes formulas withcn3/2

clauses, whereas the algorithms given in [9] and [11] are claimed only to refute formulas withΩ(n3/2+ε)
andΩ(poly(logn) ·n3/2) clauses, respectively. An implementation of our algorithm refuted a random
formula withn = 50000 variables and 27335932< 3n3/2 clauses (see details inSection5).

In some other respects, our algorithm is more limited then the algorithms in [9, 11]. An algorithm
is said to providestrong refutationif it shows not only that the input 3CNF formula is not satisfiable,
but also that every assignment to the variables fails to satisfy a constant fraction of the clauses. Our
refutation algorithm does not provide a strong refutation. The problem of strong refutation was addressed
in [4], where it was shown that variations of the algorithms of [9, 11] can strongly refute random 3CNF
formulas with at least log6(n) · n3/2 clauses. The ability to perform strong refutation is an important
issue, and its relation to approximability is discussed in [6].

2 Preliminaries

2.1 The random model

Definition 2.1. A clause is a 3-tuple of literals that belong to three different variables. The setCn is the
set of all possible clauses overn fixed variables (there are 2n·2(n−1) ·2(n−2) such clauses).

We use the following model for generating the random formulaφ .

Definition 2.2. A 3CNF formulaφ is generated by choosingmclauses fromCn independently at random
with repetitions. Such a random formula is denoted byφ ∈R Cm

n .

Although we concentrate on a specific random model for generating random formulas, our algorithm
succeeds also on other related random models. For example the formula can be a random set ofcn3/2

distinct clauses.
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2.2 Notation

We write a(n) ∼ b(n) if lim n→∞
a(n)
b(n) → 1. We use the term w.h.p. (with high probability) to denote a

sequence of probabilities that converges to 1 asn increases.

2.3 Efficient certification of a property

An important concept which will be frequently used is the concept ofefficient certification. Let P
be some property of graphs/formulas or any other combinatorial object. An algorithmA certifiesthe
property P if the following holds:

1. On any input instanceφ the algorithm returns either “has P” or “don’t know.”

2. Soundness:The algorithm never outputs “has P” on an instanceφ which does not have the prop-
erty P. The algorithm may output “don’t know” on an instanceφ which has the property P (the
algorithm has one sided error).

We will use certification algorithms on random instances of formulas/graphs taken from some probabil-
ity spaceC. We shall consider properties that are almost surely true for the random object taken fromC.
A certification algorithm iscompletewith respect to the probability spaceC and a property P if it almost
surely outputs “has P” on an input taken fromC.

The computationally heavy part of our algorithm is certifying that two different graphs derived from
the random formulaφ do not have a large cut. One of these two graphs is random, and the other is
a multigraph that is the union of 6 graphs, where each of these graphs by itself is essentially random,
but there are correlations among the graphs. A cut in a graph is a partition of its vertices into two sets.
The size of the cut is the number of edges with one endpoint in each part. A certification algorithm for
verifying that an input graph withm edges has no cut significantly larger thanm/2 is implicit in [16].
This algorithm is based on semi-definite programming; if the maximum cut in the input graph is of size
at mostm(1/2+ ε), then the algorithm outputs a certificate that the maximum cut inG is bounded by
m(1/2+ δ (ε)), whereδ (ε)→ 0 asε → 0. A computationally simpler algorithm can be applied if the
graph is random. In [7] it is shown how to certify that in a random graph taken fromGn,d/n the size of the

maximum cut is bounded bydn
(
1/4+θ(1/

√
d)
)
, thus bounding the maximum cut bym(1/2+ε) when

d is large enough. This is done by removing the vertices of highest degree fromG, and then computing
the most negative eigenvalue of the adjacency matrix of the resulting graph.

2.4 An overview of our refutation algorithm

Our algorithm builds on ideas taken from earlier work ([10, 9, 6, 7, 5, 11]). This section gives an informal
overview of the algorithm at a fairly detailed level. Other sections of this manuscript fill in the formal
details.

The input is an arbitrary 3CNF formulaφ with n variables andm= cn3/2 clauses, wherec is a large
enough constant. Below we describe the expected behavior of our algorithm when the input formula is
random. The algorithm first greedily extracts fromφ a subformulaφ ′. This is done as follows. We say
that two clausesmatchif they differ in their first literal, but agree on their second literal and on their third
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literal. For example, the clauses(x1∨ x̄2∨x3) and(x4∨ x̄2∨x3) match. The subformulaφ ′ is constructed
by greedily putting intoφ ′ pairs of clauses that match, until no further matches are found inφ (we allow
each clause ofφ to participate in at most one matched pair ofφ ′). Let m′ be the number of clauses inφ ′.
A simple probabilistic argument shows that we can expectm′ = Θ(m2/n2) = Θ(c2n). Moreover,φ ′ is
essentially a union of two random (but correlated) formulasφ1 andφ2 (each containing one clause from
every pair of clauses that are matched inφ ′). Our algorithm will now ignore the rest ofφ , and refuteφ ′.
As explained,φ ′ is a union of two random formulas. Here we use an observation that is made in [6], that
we shall call the 3XOR principle.

The 3XOR principle: In order to show that a random 3CNF formula is not satisfiable, it suffices to
strongly refute it as a 3XOR formula.

Let us explain the terms used in the 3XOR principle. A clause in a 3XOR formula is satisfied if
either one or three of its literals are satisfied. A strong refutation algorithm is one that shows that every
assignment to the variables leaves at least a constant fraction of the clauses not satisfied (as 3XOR
clauses, in our case).

A proof of the 3XOR principle is given in [6]. We sketch it here, and give it in more details in
Section3. Observe that in a random formula every literal is expected to appear the same number of times,
and if the number of clauses is large enough, then things behave pretty much like their expectation. As a
consequence, every assignment to the variables sets roughly half the occurrences of literals to true, and
roughly half to false. Hence every assignment satisfies on average 3/2 literals per clause. Moreover, this
property is easily certifiable, by summing up the number of occurrences of then most popular literals.

Given that every assignment satisfies on average 3/2 literals per clause, let us consider properties
of satisfying assignments (if such assignments exist). The good option is that they satisfy one literal
in roughly 3/4 of the clauses, three literals in roughly 1/4 of the clauses, and 2 literals in a negligible
fraction of the clauses. This keeps the average roughly at 3/2, and indeed nearly satisfies the formula
also as a 3XOR formula, as postulated by the 3XOR principle. The bad option (which also keeps the
average at 3/2) is that the fraction of clauses that are satisfied three times drops significantly below 1/4,
implying that significantly more than 3/4 of the clauses are satisfied either once or twice, or in other
words, as a 3NAE (3-“not all equal” SAT) formula. But here, let us combine two facts. One is that
for a random large enough formula, every assignment satisfies roughly 3/4 of the clauses as a 3NAE
formula. The other (to be explained below) is that there are known efficient algorithms for certifying
that no assignment satisfies more than 3/4+ ε fraction of the clauses of a 3NAE formula. Hence for a
random 3CNF formula, one can efficiently certify that the bad option mentioned above does not occur.

Having established the 3XOR principle, the next step of our algorithm makes one round of Gaussian
elimination. That is, under the assumption that we are looking for near satisfiability as 3XOR (which
is simply a linear equation modulo 2), we can add clauses modulo 2. Adding (modulo 2) two matched
clauses, the common literals drop out, and we get a clause with only two literals whose XOR is expected
to be 0, namely, a 2EQ clause (EQ for equality). For example, from the clauses(x1⊕ x̄2⊕ x3) and
(x4⊕ x̄2⊕ x3) one gets the clause(x1 = x4). Doing this for all pairs of matched clauses inφ ′, we get
a random 2EQ formulaφ2eq. If φ ′ was nearly satisfiable as 3XOR, thenφ2eq must be nearly satisfiable
as 2EQ. But ifφ ′ is random, thenφ2eq is essentially a random 2EQ formula. For such formulas, every
assignment satisfies roughly half the clauses. Moreover, there are known algorithms that certify this (to
be explained shortly). Hence we can strongly refuteφ2eq as 2EQ, implying strong refutation ofφ ′ as
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3XOR, implying strong refutation ofφ ′ as 3SAT, implying refutation (though not strong refutation) of
φ as 3SAT.

Let us briefly explain here the major part that we skipped over in the description of our algorithm,
namely, how to certify that a random 2EQ formula is not 1/2+ ε satisfiable, and how to certify that a
random 3NAE formula is not 3/4+ ε satisfiable. In both cases, we reduce the certification problem to
certifying that certain random graphs do not have large cuts, and then use the certification algorithms
mentioned inSection2.3. (The principle of refuting random formulas by reduction to random graph
problems was introduced in [10].)

To strongly refute random 2EQ formulas, we negate the first literal in every clause, getting a 2XOR
formula. Now we construct a graph whose vertices are the literals, and whose edges are the clauses. A
nearly satisfying 2XOR assignment naturally partitions the vertices into two sides (those literals set to
true by the assignment versus those that are set to false), giving a cut containing nearly all the edges. On
the other hand, if the original 2EQ formula was random, then so is the graph, and it does not have any
large cut. As explained inSection2.3, we can efficiently certify that the graph does not have a large cut,
thus strongly refuting the 2XOR formula, and hence also strongly refuting the original 2EQ formula.

To strongly refute random 3NAE formulas, we again consider a max-cut problem on a graph (in fact,
a multigraph, as there may be parallel edges) whose vertices are the literals. From each 3NAE clause we
derive three edges, one for every pair of literals. For example, from the 3NAE clause(x1, x̄2,x3) we get
the edges(x1, x̄2), (x̄2,x3) and(x3,x1). It is not hard to see that if a 3/4+ε fraction of the 3NAE clauses
are satisfied as 3NAE, than a2

3(3
4 +ε) = 1

2 + 2ε

3 fraction of the edges of the graph are cut by the partition
induced by the corresponding assignment. Note that in our case (ofφ ′ that is the union of randomφ1

and randomφ2) this graph is essentially a union of 6 random graphs: 3 graphs derived from the clauses
of φ1 (one with edges derived from the first two literals in every clause, one with edges derived from
the last two literals, and one from the first and third literal), and 3 graphs derived fromφ2. Hence it is
not expected to have a cut containing significantly more than half the edges. One may certify that this
is indeed the case either by using the algorithm of [16] on the whole graph, or by using the algorithm
of [7] on each of the 6 random graphs separately.

Summarizing, our refutation algorithm extracts fromφ a subformulaφ ′ (composed of matched pairs
of clauses), checks that inφ ′ almost all literals appear roughly the same number of times, derives from
φ ′ certain graphs on 2n vertices and certifies that they do not have large cuts (e. g., by computing the
most negative eigenvalue of their adjacency matrices). The combination of all this evidence forms a
proof thatφ is not satisfiable. Ifφ is random and large enough (cn3/2 clauses), then almost surely the
algorithm will indeed manage to collect all the desired evidence.

3 The refutation algorithm

The input formulaφ is taken fromCcn3/2

n . We will use(?,w, `) to denote a clause in which the second and
the third literals arew and`, respectively, and the first literal can be any literal. The following algorithm
is used to extractφ ′ from φ .
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Algorithm Extract (φ)
Setφ1 = φ2 = /0.
For every ordered pair of literals(w, `):

1. Count the number of clauses inφ of the form(?,w, `) and store it inN(w,`).

2. If N(w,`) ≥ 2 add toφ1 the first appearance of a(?,w, `) clause and add toφ2

the second appearance of a(?,w, `) clause.

Returnφ ′ = (φ1,φ2).

Each ofφ1,φ2 is a random formula, though clauses inφ1 (andφ2) are not completely independent
of each other: if a clause(x,y,z) appears, then the clause(t,y,z) cannot appear. From now on we will
concentrate on refutingφ ′, ignoring the rest ofφ . The number of matched pairs inφ ′ is denoted bym
(in Section2.4we usedm to denote the number of clauses inφ ; from here on,mwill denote the number
of matched pairs inφ ′).

Lemma 3.1. Let φ ′ be the formula returned by Extract(φ), whereφ ∈R Ccn3/2

n . W.h.p. the number of
matched pairs inφ ′ is∼ c2n

8 .

The proof ofLemma3.1 is deferred toSection4. Before specifying the algorithm, we introduce
additional notation and definitions which will ease the description of the algorithm.

Definition 3.2. Let φ be any 3CNF formula overn variables. Thegraph induced byφ has 2n ver-
tices (corresponding to all possible literals) and the following edges. Each clause ofφ induces three
edges by taking all (unordered) pairs of literals from it (e. g., the clause(x,y, z̄) induces the edges
(x,y),(x, z̄),(y, z̄)). We denote the (multi) graph induced byφ by Gφ .

Definition 3.3. Let φ ′ = (φ1,φ2) be a 3CNF formula withmpairs of matched clauses. The graphGφ ′ is

the graph induced byφ ′ (as inDefinition3.2). The graphG2eq
φ ′ is a graph with 2n vertices (corresponding

to all literals). Its edges are as follows: each matched pair fromφ1,φ2, say(x,w, `),(y,w, `), induces
exactly one edge(x̄,y). Note that we negate the literal which corresponds to the clause ofφ1.

Definition 3.4. Let φ be a formula withn variables andmclauses. Theimbalanceof a variablei (denoted
by Imi) is the difference in absolute value between the number of times it appears with positive polarity
and the number of times it appears with negative polarity. Thetotal imbalanceof φ is ∑n

i=1 Imi and the
normalized imbalanceof φ is (1/3m)∑n

i=1 Imi .

If the normalized imbalance ofφ is bounded byδ , thenφ is δ -balanced.

Definition 3.5. A 3CNF formulaφ has the(1− ε) 3XOR property if for every assignmentA, if A
satisfiesφ as 3CNF, then at least 1− ε fraction of the clauses are satisfied as 3XOR.

Definition 3.6. A graph is said to have aδ -cut if there is a partition of its vertices into two disjoint sets
such that at least aδ -fraction of the edges cross this partition.
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Algorithm Refute(φ ′)

1. Certify thatφ ′ has the(1− γ) 3XOR property. Specifically:
(a) Find the normalized imbalance ofφ ′ and denote it byδ ′.
(b) Certify thatGφ ′ has no(1

2 + ε ′)-cut (ε ′ is returned by a subroutine).
Setγ = 3

2(δ ′+2ε ′).

2. Certify thatG2eq
φ ′ has no(1

2 + ε)-cut (ε is returned by a subroutine).

3. If ε +2γ < 1
2 return “unsatisfiable,” otherwise return “don’t know.”

In steps 1(b) and 2 of Refute(φ ′) we use as a blackbox a subroutine for bounding the maximum cuts
in Gφ ′ andG2eq

φ ′ . This subroutine is explained inTheorem3.10.
We first show that Refute(φ ′) is sound, i. e., whenever it returns “unsatisfiable” it holds thatφ ′ can

not be satisfied. This follows fromLemma3.8andTheorem3.7.

Theorem 3.7 (Soundness).Letφ ′ = (φ1,φ2) be a 3CNF formula composed of pairs of matched clauses.
Denote by G2eq

φ ′ the graph induced byφ ′ as described inDefinition3.3. The formulaφ ′ is not satisfiable
if all the following conditions hold:

1. φ ′ has the(1− γ)3XOR property,

2. G2eq
φ ′ has no(1

2 + ε)-cut,

3. ε +2γ < 1
2.

Proof. We shall show that ifφ ′ is satisfiable and has the(1−γ)3XOR property, thenG2eq
φ ′ has a(1−2γ)-

cut. Combined with the fact thatG2eq
φ ′ has no 1/2+ε cut we derive a contradiction (sinceε +2γ < 1/2).

Consider the cut induced on the vertices ofG2eq
φ ′ by a satisfying assignmentA (where in one side there

are all the literals whose value is true and in the other side there are all the literals whose value is false).
A(x) denotes the value of the literalx induced by the assignmentA. By the 3XOR property ofφ ′, all butγ
fraction of the clauses ofφ ′ are satisfied as 3XOR clauses. Hence at least a(1−2γ) fraction of the pairs
of matched clauses have both clauses in the pair satisfied byA as 3XOR. Let(x,w, `),(y,w, `) be a pair
such that both(x,w, `) and(y,w, `) are satisfied as 3XOR. It holds that:A(x)+A(y)+2(A(w)+A(`)) =
0 mod 2. Thus exactly one of the literals ¯x,y is true and the other is false (under the assignmentA), and
the edge(x̄,y) induced by this pair of clauses crosses the cut. It then follows that at least 1−2γ fraction
of the edges inG2eq

φ ′ are cut edges.

Lemma 3.8 (The3XOR lemma). Let φ be a 3CNF formula. If the following hold:

1. φ is δ -balanced, and

2. the graph (induced byφ ) Gφ has no(1
2 + ε)-cut,
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thenφ has the(1− 3
2(δ +2ε))3XOR property.

Proof. The proof of this lemma appears in [6]; also a similar version of this lemma (for denser random
2kCNF formulas) appears in [5]. We repeat the proof for the sake of self-containment.

Denote bym the number of clauses inφ and letA be a satisfying assignment. We bound from
above the number of satisfied appearances of literals. The assignment which maximizes the number
of satisfied appearances of literals is the ’majority vote’: a variablex is assigned ’true’ iff it appears
more times with positive polarity than with negative polarity. Using this assignment the total number
of satisfied appearances is1

2

(
3m+∑n

i=1 Imi
)

(whereImi denotes the imbalance of variablei). It follows
that on average each clause is satisfied at most3

2 + 1
2m ∑n

i=1 Imi = 3
2(1+δ ) times.

A clause is satisfied as 3AND byA if all its literal are satisfied byA. We next show that the fraction of
clauses satisfied byA as 3AND is at least 1/4−3ε/2. Equivalently it is enough to show that the fraction
of clauses satisfied as 3NAE, denoted byβ , is at most 3/4+3ε/2 (sinceA is a satisfying assignment).
Consider the graphGφ induced byφ . We remind the reader that each clause ofφ contributes a “triangle”
of 3 edges toGφ (e. g., the clause(x, ȳ,z) contributes the edges(x, ȳ),(ȳ,z),(x,z)). Consider the cut
induced by the satisfying assignmentA. Each clause satisfied as 3NAE contributes exactly 2 edges to
the cut, thus this cut has at least 2βm edges. ButGφ has no(1/2+ ε)-cut. It follows that 2βm≤
(1/2+ ε)3m, giving β ≤ 3/4+3ε/2 as needed.

It remains to show that all but a small fraction of the clauses are satisfied as 3XOR byA. Denote
by α1,α2,α3 the fraction of clauses which are satisfied exactly once, exactly twice and exactly 3 times
respectively (∑3

i=1 αi = 1). We already know thatα3 ≥ 1/4−3ε/2 and that each clause is satisfied at
most 3/2+δ times on average, thus

3(1+δ )
2

≥ 3·α3 +2·α2 +1·α1 .

Substitutingα1 = (1−α3−α2) andα3 with 1
4−

3
2ε yields thatα2 ≤ 3

2(δ +2ε).

The following two Theorems show that our refutation algorithm refutes most formulasφ ∈R Ccn3/2

n .

Theorem 3.9. For anyε > 0 there is a constant c= c(ε) such that w.h.p. over the choice ofφ ∈RCcn3/2

n :

(a) the subformulaφ ′ is ε-balanced, and

(b) each of the graphs Gφ ′ and G2eq
φ ′ has no(1

2 + ε)-cut.

It is well known and follows from standard probabilistic calculations that a random graph (with large
enough average degree) has no(1/2+ε)-cut, and that a random formula isε-balanced. The distributions
of φ ′,Gφ ′ are close enough to the standard models of random formulas/graphs respectively, so that the
proof techniques used for the random cases can be applied also in our case. The proof ofTheorem3.9
is deferred toSection4.2.

Theorem 3.10.There is a polynomial time algorithm that finds the imbalance of a 3CNF formula. There
is a polynomial time algorithm that for every graph G that has no(1

2 + ε)-cut, certifies that G has no
(1

2 +δ )-cut, whereδ (ε)→ 0 asε → 0.
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Proof. Finding the normalized imbalance of a formulaφ is done by counting positive and negative
appearances for every variable, computing its imbalance and averaging.

An algorithm for certifying a bound on the maximum cut of a graph is given in [16]. Given a
graph withmedges whose maximum cut is bounded bym(1/2+ε) this algorithm produces a proof that
the input graph has no cut of cardinalitym(1/2+ δ ). This algorithm has the property thatδ → 0 as
ε → 0.

Corollary 3.11 (Almost-completeness).For sufficiently large constant c, the refutation algorithm w.h.p.
returns “unsatisfiable” for a random formulaφ ∈R Ccn3/2

n .

Proof. Using Theorems3.9, 3.10we will show that by takingc to be a sufficiently large constant, the
termsε,γ from Refute(φ ′) can be made arbitrary small (and thusε + 2γ < 1/2). The termγ equals
(3/2)(δ ′+ 2ε ′) whereδ ′ is the imbalance ofφ ′ and(1/2+ ε ′) is the bound returned by the algorithm
of [16] when applied toGφ ′ . By Theorem3.9, δ ′ → 0 asc increases. Furthermore, the value of the

maximum cut in bothGφ ′ ,G
2eq
φ ′ approaches 1/2 asc increases. It then follows, usingTheorem3.10, that

the bounds 1/2+ε ′ and 1/2+ε returned by the certification algorithm (of [16]) applied toGφ ′ andG2eq
φ ′ ,

respectively, can be made arbitrary close to 1/2 by settingc to be a sufficiently large constant.

4 Proofs ofLemma 3.1and Theorem3.9

4.1 Proof ofLemma 3.1

Proof ofLemma3.1. For two random clauses the probability that they induce a matched pair of clauses
is

p ,
1
2n

1
2n−2

∼ 1
4n2 .

Thus, the expected number of pairs that match is

µ =
(

cn3/2

2

)
p∼ c2n3

2
1

4n2 ∼
c2n
8

. (4.1)

Let X denote the number of pairs of clauses inφ that match. We use the second moment to show that
w.h.p.X ∼ µ. By Chebyshev’s inequality

Pr[|X−µ|> εµ] <
Var(X)
ε2µ2 . (4.2)

For every two clause locations inφ (e.g., first clause and third clause) we set an indicator random variable

Xi (i = 1,2, ...,
(cn3/2

2

)
) to be 1 if the respective two clauses match and otherwise 0. Fori 6= j we say that

i ∼ j if the pair i and pairj share one clause location, and otherwisei � j. (Note that if pairi and pairj
share two clause locations, theni = j. Note also thati � j might share the same clause without sharing
a clause location, if a certain clause happened to appear twice inφ .) For any fixedi we let

∆∗ = ∑
j: j∼i

Pr[Xj | Xi ] . (4.3)
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¿From symmetry,∆∗ does not depend oni.

Var(X) = E
[
X2]−µ

2 = E
[
(∑

i

Xi)2]−µ
2 = E

[
∑

i

X2
i + ∑

i 6= j

XiXj

]
−µ

2

= µ−µ
2 + ∑

i 6= j

Pr[XiXj ] = µ−µ
2 +∑

i

Pr[Xi ]

(
∑

j: j�i

Pr[Xj ]+ ∑
j: j∼i

Pr[Xj | Xi ]

)
≤ µ−µ

2 +∑
i

Pr[Xi ]∑
j

Pr[Xj ]︸ ︷︷ ︸
µ2

+∑
i

Pr[Xi ] ∑
j: j∼i

Pr[Xj | Xi ]︸ ︷︷ ︸
∆∗

= µ +∑
i

Pr[Xi ]∆∗ = µ(1+∆∗) . (4.4)

Substituting Var(X) with µ(1+∆∗) in inequality (4.2) we derive

Pr[|X−µ|> εµ] <
µ(1+∆∗)

ε2µ2 ≤ 1+∆∗

ε2µ
. (4.5)

Thus, sinceµ = ω(1), it suffices to show that∆∗ = o(µ). It holds that

∆∗ ≤ 2(cn3/2−2)p = o(µ) . (4.6)

So far we showed that w.h.p.X ∼ µ. Note thatX may over-count the number of matched pairs inφ ′.
The reason is that inφ there are expected to be sets of three or more clauses in which any two clauses
match. From each such set, Extract(φ) takes toφ ′ only the first two clauses of the set.

For i ≥ 3, we call a set ofi clausesbad if each two clauses of the set match. LetYi be the number of
bad sets of sizei in φ . The number of matched clauses inφ ′ is at leastX−∑i≥3

( i
2

)
Yi . Thus, in order to

show that the number of matched pairs inφ ′ is∼ µ it is enough to prove that

E

[
∑
i≥3

(
i
2

)
Yi

]
= o(µ) .

Then, using Markov’s inequality we derive that w.h.p.∑i≥3

( i
2

)
Yi = o(µ). It holds

E
[(

i
2

)
Yi

]
=
(

i
2

)(
cn3/2

i

)
pi−1 ≤ i2

2

(
cn3/2e

i

)i(
1

4n2(1−1/n)

)i−1

. (4.7)

Thus, the sum∑i≥3E
[( i

2

)
Yi
]

is bounded by the sum of a geometric sequence whose first term (i = 3) is
o(µ). It follows thatE

[
∑i≥3

( i
2

)
Yi
]
= o(µ).

4.2 Proof ofTheorem3.9

Let P⊂Cn×Cn be the set of all possible matched pairs of clauses, and letPm be the set of allm-tuples of
matched pairs of clauses. For a pair of matched clauses(c1,c2) ∈ P, theinducing pairis the pair formed
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by the second and third literals in each of the two matched clausesc1,c2. Let m denote the number of
matched pairs of clauses inφ ′. Note thatφ ′ ∈ Pm, however not all the elements ofPm are in the support
of φ ′. We denote by

(P
m

)
⊂ Pm the support ofφ ′, i. e., the collection of all (ordered)m matched pairs for

which every matched pair of clauses has a distinct inducing pair. We claim thatφ ′ is a random element
of
(P

m

)
.

Lemma 4.1. Given thatφ ′ has m matched clauses, the set of inducing pairs is a random set of m different
ordered pairs of literals (each pair has two distinct literals).

Proof. LetC denote the set of clauses that have a matching clause (from the original formulaφ ). Denote
by L the set of inducing pairs, i. e., pairs that participate as the second and third literal in one of the
clauses ofC. The setL may be any set of distinct ordered pairs of sizem. By symmetry, any such set is
equally likely to beL. The explanation is as follows. Assume we expose the indices of the clauses inC
and also the partition ofC into equivalent classes (each equivalent class is a maximal set of clauses that
have the same second and third literals). Given this information, for each choice ofL, the probability
thatL is the set of inducing pairs is the same (for anyL the number of ways to match the pairs ofL with
the equivalent classes is the same; additionally, the probability for all other clauses not inC to avoid all
the pairs ofL in the second and third literals is the same).

Proof ofTheorem3.9. ¿From here on we will assume thatm is a fixed number and thatm∼ c2n/8 (this
is justified byLemma3.1). The formulaφ ′ is a random element of

(P
m

)
. Let φ ′′ ∈R Pm (i. e., φ ′′ is

composed ofm random and independent samples fromP). Denote byΩ′ the event that every matched
pair of clauses inφ ′′ has a distinct inducing pair. Conditioned onΩ′, φ ′′ has the distribution ofφ ′. As
Lemma4.2 shows, the eventΩ′ is not too rare (the proof ofLemma4.2 is deferred to the end of this
section).

Lemma 4.2. Let m= c2n
8 . For φ ′′ ∈R Pm it holds thatPr[Ω′]≥ e−c4/128

Furthermore, asLemma4.3states,Gφ ′′ is unlikely to have a large cut.

Lemma 4.3. Let m∼ c2n
8 . For φ ′′ ∈R Pm with probability1−o(1) it holds that Gφ ′′ has no(1

2 + 4
c)-cut.

Combining Lemmas4.2, 4.3we now show thatGφ ′ is unlikely to have a large cut. The reasoning is as
follows:

Pr
φ ′∈R(P

m)
[Gφ ′ has(1

2 + 4
c) cut] = Pr

φ ′′∈RPm
[Gφ ′′ has(1

2 + 4
c) cut |Ω′] (4.8)

≤
Prφ ′′ [Gφ ′′ has(1

2 + 4
c) cut]

Prφ ′′ [Ω′]
≤ o(1)

e−c2/128
= o(1) , (4.9)

where the last equality is becausec is a fixed constant.
A similar argument shows that if w.h.p.G2eq

φ ′′ has no(1/2+ ε)-cut andφ ′′ is ε-balanced, then w.h.p.

G2eq
φ ′ has no(1/2+ ε)-cut andφ ′ is ε-balanced. Hence, we only need to prove the following lemmas.

Lemma 4.4. Let m∼ c2n
8 . For φ ′′ ∈R Pm with probability1−o(1) it holds that G2eq

φ ′′ has no(1
2 + 5

c)-cut.
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Lemma 4.5. Let m∼ c2n
8 . For φ ′′ ∈R Pm, with probability1−o(1) it holds thatφ ′′ is 3

c-balanced.

To complete the proof ofTheorem3.9we now give the proofs of Lemmas4.3, 4.4, 4.5, and4.2.

Proof ofLemma4.3. Fix a partition(V1,V2) of the vertices ofGφ ′′ . We denote byWφ ′′(V1,V2) the num-
ber of edges crossing the cut(V1,V2) in Gφ ′′ . For φ ′′ ∈R Pm the expectation ofWφ ′′(V1,V2) is at most
6m(1/2+1/n). For any formulaφ ′′ ∈ Pm we let f (φ ′′) be equal toWφ ′′(V1,V2). Let Xi be the expected
value of f after exposing the firsti pairs ofφ ′′ (for i = 0,1, . . . ,m). The sequenceX0,X1, . . . ,Xm is a
martingale. The following two facts:

1. for any φ ′′ ∈ Pm, changing one matched pair (an element ofP) can change the value off by at
most 4 (each clause forms a triangle that contributes at most 2 edges to the cut), and

2. φ ′′ is taken from a product measurePm,

imply that for everyi it holds that|Xi −Xi+1| ≤ 4 (see Theorem 7.4.1 from [1]). Azuma’s inequality
implies that for anyλ > 0

Pr[ f (φ ′′)−6m(1
2 + 1

n) > λ ] < e−
λ2

2m42 .

Settingλ = 17m
c and usingm∼ c2n

8 we derive

Pr
φ ′′∈RPm

[Wφ ′′(V1,V2) > 6m(1
2 + 4

c)] < 2−1.1n .

Using the union bound over all possible cuts we derive that w.h.p. (forφ ′′ ∈R Pm) the graphGφ ′′ has no
(1

2 + 4
c)-cut.

The proof ofLemma4.4 is very similar to the proof ofLemma4.3, details are omitted.

Proof ofLemma4.5. We first bound the expected imbalance ofφ ′′. The total imbalance ofφ ′′ is bounded
by the sum of the imbalances ofφ1,φ2 (whereφ1/φ2 are formed by taking the first/second clause from
each matched pair ofφ ′′). Sinceφ2 has the same distribution ofφ1, it is enough to bound the expected
total imbalance ofφ1 (and then multiply by two). The total imbalance ofφ1 is the sum of the imbalances
of all variables inφ1, i. e.,∑n

i=1 Imi (the imbalance ofxi in φ1 is denoted byImi).
For any variablexi we denote bydi the number of appearances ofx in φ1. For φ ′′ ∈R Pm it holds

that∑n
i=1E[di ] = 3m. By symmetry, for everyi it holds thatE[di ] = 3m/n. We denoted , 3m/n. Given

thatdi = k the polarities of the appearances ofxi are still random. Given thatdi = k, the imbalance of
xi is the absolute value of the sum ofk independent random variables, where each random variable has
probability 1/2 of being 1 and probability 1/2 of being−1. HenceE[Im2

i | di = k] = k. It then follows
that

E[Im2
i ] = ∑

k

Pr[di = k] ·E[Im2
i | di = k] = ∑

k

kPr[di = k] = E[di ] = d , (4.10)
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where all probabilities and expectations are taken overφ ′′ ∈R Pm. Using the convexity of the square
function

E[Imi ]≤
√

E[Im2
i ]≤

√
d . (4.11)

So far we showed thatEφ ′′∈RPm

[
∑n

i=1 Imi
]
≤ n

√
d. Thus, forφ ′′ ∈R Pm the total imbalance ofφ ′′ is

expected to be less than 2n
√

d. We will now show that the total imbalance ofφ ′′ is not likely to be
too large relative to 2n

√
d. For anyφ ′′ ∈ Pm we let f (φ ′′) be the total imbalance ofφ ′′. Changing one

matched pair of clauses inφ ′′ changes the total imbalance ofφ ′′ by at most 12. Azuma’s inequality
implies that for anyλ > 0

Pr
φ ′′∈RPm

[
f (φ ′′)−2n

√
d > λ

]
< e−

λ2

2m122 .

Settingλ = n
√

d and usingd = 3m/n we derive

Pr
φ ′′∈RPm

[the total imbalance ofφ ′′ > 3n
√

d] < e−
n
96 .

It then follows that the normalized imbalance ofφ ′′ is w.h.p. bounded by 3n
√

d/6m≤ 3/c (using
m∼ c2n/8 andd = 3m/n).

Proof ofLemma4.2. We generateφ ′′ iteratively by choosing each time (independently) a random ele-
ment ofP. For each new random element ofP, the probability for it to have an inducing pair which
is different from all previous inducing pairs is≥ 1−m/N, whereN = 2n · (2n− 2) is the number of
possible inducing pairs. It then follows that with probability of at least(

1− m
2n(2n−2)

)m (1)
≥ exp

(
−m
(

m
2n2(1−1/n)

)) (2)
≥ e−c4/128 ,

each of the matched pairs inφ ′′ has a distinct inducing pair. Inequality (1) is because 1− x≥ e−2x

holds for everyx∈ [0,1/2]. The constant in the exponent following Inequality (2) is derived by taking
m= c2n/8.

5 Practical considerations for the refutation algorithm

Recall that our refutation algorithm extracts fromφ a subformulaφ ′ that contains matched pairs of
clauses, and then refutesφ ′. The longerφ ′ is, the easier it is to refute it. For simplicity, we matched a
pair of clauses only if they agreed on their last two literals. Moreover, every clause ofφ participated in
at most one pair of matched clauses inφ ′, even though a clause may be eligible to participate in more
than one matched pair. In practical implementations, it is advantageous not to have these restrictions,
and thus get a longer formulaφ ′. In particular, we may allow the same clause to participate in several
pairs of matched clauses, by duplicating it. More importantly, we may match any two clauses that share
two variables (regardless of the polarity of the variables, and of their location within the clauses). For
example, the two clauses(x,w, `) and(w̄, `,y) can be matched. Ifφ ′ is satisfied by an assignmentA that
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has the 3XOR property, then one step of Gaussian elimination gives in this caseA(x)+A(w)+A(`)+
A(y)+ A(w̄)+ A(`) = 0 mod 2, thusA(x)+ A(y) = 1 mod 2. Hence, we will associate the edge(x,y)
with this pair of matched clauses so that the edge induced by this pair inG2eq

φ ′ will cross the cut which
corresponds to the assignmentA. Using the principles above, the number of pairs of matched clauses

that one expects to extract from a random formula of lengthcn3/2 is roughly
(3cn3/2

2

)
/
(n

2

)
' 9c2n.

We used the principles above to implement the algorithm in practice. In the current implementa-
tion, the problem of refutingφ ′ is reduced to strong refutation of two 2XOR formulas. We performed 2
eigenvalue computations on matrices of sizen×n, whereas the original refutation algorithm performed
eigenvalue computations on matrices of size 2n×2n. Our implementation uses the conditions ofTheo-
rem5.2to refuteφ ′. Before statingTheorem5.2we need the following definition.

Definition 5.1. Let φ be a 2XOR formula withm clauses andn variables.Aφ is the followingn× n
symmetric matrix associated withφ . Initially Aφ is the zero matrix. For each clause of the forms(x, ȳ)
or (x̄,y) we add+1 to positionsA(x,y) andA(y,x). For each clause of the forms(x,y) or (x̄, ȳ) we add
−1 to positionsA(x,y) andA(y,x).

A similar matrix can be defined for a 2EQ formula, just by reducing the 2EQ formula into a 2XOR
formula.

Theorem 5.2. Let φ ′ be a 3CNF formula with m pairs of matched clauses and n variables. Letφ2xor be
the 2XOR formula with6m clauses induced by replacing each 3CNF clause ofφ ′ by three 2XOR clauses
(one for every two literals). Letφ2eq be the 2EQ formula with m clauses induced by adding pairs of
matched clauses modulo2. If the following hold thenφ ′ is not satisfiable:

(1) φ ′ is δ -balanced.

(2) Let λ2xor,λ2eq denote the largest eigenvalues of Aφ2xor,Aφ2eq respectively; then

3δ +
n

4m
(λ2xor +λ2eq) < 1

2 .

The proof ofTheorem5.2will follow shortly.

Lemma 5.3 (2XOR strong refutation). Letφ be a 2XOR formula with m clauses. Ifλ is the maximum
eigenvalue of Aφ thenφ is at most(1

2 + ε) satisfiable, forε = λn
4m.

Proof. Let T be an assignment satisfying the most clauses as 2XOR. Letx be the±1 vector which
corresponds to T:xi equals+1 if T(i) = true, otherwisexi = −1. It holds thatxtAφ x = Aφ •xxt (where
for any two matricesA,B of the same dimensions,A•B = ∑i, j A(i, j)B(i, j)). Every 2XOR clause
satisfied by T contributes 2 toAφ • xxt whereas every unsatisfied clause contributes−2. If T satisfies
exactly(1/2+ ε)m clauses, then

xtAφ x

xtx
=

(1
2 + ε)m(+2)+(1

2− ε)m(−2)
n

= 4εm/n . (5.1)

SincextAφ x/xtx≤ λ we deriveε ≤ λn/4m.
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Lemma 5.4 (3XOR property certification). Let φ be a 3CNF formula which isδ -balanced with m
clauses and n variables. Assume that the 2XOR formula induced by replacing each 3CNF clause by3
2XOR clauses is at most(1

2 + γ) satisfiable. Thenφ has the(1− 3
2(δ +2γ))3XOR property.

Proof. Assume that the assignment T satisfiesφ as 3CNF. Denote byαi the number of clauses satisfied
exactly once, twice, three times respectively (∑3

i=1 αi = 1). We need to upper boundα2. It can not be
thatα3 is too small, as in such case there are many satisfied clauses in the induced 2XOR formula: if a
clause ofφ is satisfied exactly once or exactly twice, then out of the three 2XOR clauses induced by it,
two are satisfied as 2XOR. Since the number of satisfied 2XOR clauses (in the induced 2XOR formula)
is bounded by 3m(1/2+ γ), we derive 2m(α1 + α2) ≤ 3m(1/2+ γ), or equivalentlyα3 ≥ 1/4−3γ/2.
The imbalance ofφ is bounded byδ , thus the number of satisfied literals inφ is at most32(1+δ )m. This
implies

3(1+δ )
2

≥ α1 +2α2 +3α3.

Using the facts:α1 = 1−α2−α3 andα3 ≥ 1
4−

3
2γ we deduce

3
2(1+δ )≥ α2 +1+2(1

4−
3
2γ), (5.2)

and thus3
2(δ +2γ)≥ α2.

Proof ofTheorem5.2. Assume thatφ ′ is satisfiable as 3CNF. We show that property (1) contradicts
property (2). Set

ε2xor ,
λ2xorn
4·6m

, and ε2eq ,
λ2eqn

4m
.

By Lemma5.3 φ2xor andφ2eq are at most(1/2+ ε2xor) and(1/2+ ε2eq) satisfied, respectively . It then
follows, usingLemma5.4, thatφ ′ is (1− (3/2)(δ + 2ε2xor)) satisfied as 3XOR. Each pair of matched
clauses ofφ ′ for which both clauses are satisfied as 3XOR yields a satisfied 2EQ clause ofφ2eq. As φ2eq

is at most(1/2+ ε2eq) satisfied, we conclude that

1−3(δ +2ε2xor)≤ 1
2 + ε2eq, or equivalently (5.3)

3(δ +2ε2xor)+ ε2eq≥ 1
2 . (5.4)

Substitutingε2xor andε2xor according to the definitions in (5) we derive

3δ +
n

4m
(λ2xor +λ2eq)≥ 1

2 ,

which contradicts property (2).

We generated several random formulas withn= 5·104 variables and 27335932= d2.445·n3/2e clauses.
Our algorithm refuted all of them (our current implementation fails to refute formulas of significantly
lower clause density). We give more detailed results for one specific (though typical) run. Our algorithm
extracted a subformulaφ ′ with m= 2689832 pairs of matched clauses.Table1 summarizes the values
computed by the algorithm along with a heuristic estimation of what we could have expected them to
be.
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m λ2eq λ2xor δ Bound

Algorithm 2689832 20.8961 54.6503 0.048662 0.49706< 1
2

Heuristic bound: 2690112 20.7454 50.8157 0.05565 0.49946< 1
2

(using formula) ≈ 9c2n 2
√

18c2 2
√

108c2
√ n

6m
n

4m(λ2eq+λ2xor)+3δ

Table 1: Results for a random formula with 5·104 variables and 27335932 clauses.

Let us explain the heuristic bounds used in the table. To estimate the largest eigenvalue of a sym-
metric matrix we use the formula 2

√
d whered is the averagè1 norm of each of the rows. This bound

is known to be true for various random graph models, but apparently is too optimistic forAφ2xor. To
estimate the imbalanceδ we assume that each variable appears exactly 6m/n times, each time with ran-
dom polarity. The difference between the number of positive and negative appearances behaves like the
distance from 0 when performing a random walk of length 6m/n on Z (starting from 0). The expected
square of the distance is 6m/n, and

√
6m/n is an upper bound on the expected distance. We estimated

the expected normalized imbalance asn
√

6m/n/6m=
√

n/6m.
A few words about the implementation of our algorithm. The part of extracting the subformula

φ ′ was implemented in C. The other parts (computing the imbalance and the eigenvalues) were imple-
mented in Matlab. To save memory we used Matlab’s sparse matrix objects. The heavy part of the
algorithm was computing the largest eigenvalues of the two matricesAφ2xor,Aφ2eq. This part took 63
minutes on an Intel Xeon CPU 1700MHz with 256K cache and 2Gbyte memory (running the Linux
operating system).

It may be interesting to see if other refutation algorithms (which may use various optimized versions
of resolution, OBDDs, backtracking, to name a few of the common algorithmic principles used for
refutation) can handle random formulas with as many variables as those handled by our algorithm. We
have not made a serious attempt to check this.
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