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1 Introduction

Approximation algorithms for NP-hard problems—metrigP, VERTEX COVER, graph expansion, cut
problems, etc.—often use a linear relaxation of the problem (see VazgddniHochbaum 22]). For
instance, a simple 2-approximation algorithm¥@RTEX COVERSsolves the following relaxation: min-
imize Yoy X such thatx +x; > 1 for all {i,j} € E. One can show that in the optimum solution,
X € {0,1/2,1}. Thus rounding the 2's up to 1 gives a/ERTEX COVER[21]. This also proves an
upper bound of 2 on thiategrality gapof the relaxation, which is the maximum over all graghef the
ratio of the size of the minimunaERTEX COVERIN G and the cost of the optimum fractional solution.

*Supported by David and Lucile Packard Fellowship, NSF Grants CCR-009818 and CCR-0205594. Work done while
visiting Microsoft Research and the CS Dept at UC Berkeley.
TResearch supported by NSF grant DSM 9971788 and DARPA grant F33615-01-C-1900

to publish the work electronically and in hard copy. Use of the work is permitted as
long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, séetp://theoryofcomputing.org/copyright.html.

(© 2006 Sanjeev Arora, @a Bollolas, Laszb Lovasz, and lannis Tourlakis DOI: 10.4086/toc.2006.v002a002

Authors retain copyright to their work and grant Theory of Computing unlimited ?hts



http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright.html
http://dx.doi.org/10.4086/toc.2006.v002a002

S. ARORA, B. BOLLOBAS, L. LOVASZ, |. TOURLAKIS

Can we write a linear relaxation with a lower integrality gap, s&?INote that the LP need not even be
of polynomial size so long as it comes with a polynomial time separation oracle, which is all we need to
solve it with the Ellipsoid method.

Such quests for tighter relaxations can seem never-ending, since even simple modifications could
conceivably tighten the relaxation. For certain problems, though, the quest for tighter relaxations—
indeed, the quest for any better approximation algorithms—has ended. Results using probabilistically
checkable proofs (PCPs) show that for a variety of problems suchrnas3sAT, SET COVER MAX -
2SAT, etc., known approximation guarantees cannot be improvegtiNP. Thus PCP-based techniques
provide an explanation for our inability to provide tighter relaxations for these problems.

However, for many other problems, including all four problems mentioned in the opening paragraph,
the PCP-based results are fairly weak or nonexistent and fall well below the integrality gaps of the best
relaxations. The best hardness resultfBRTEX COVER—due to Dinur and Safrélfl], who improved
upon a long line of work—only shows that3b-approximation is NP-hard. The best hardness result for
metricTsponly shows that D1-approximation is NP-har@¥], yet decades of work has failed to yield a
relaxation with integrality gap better tharb]32] (or 4/3, if one believes a well-known conjecturEr]).

For graph expansion and related graph problems essentially no hardness results exist yet we only know
relaxations with integrality ga@(logn) (Shmoys 29)).

When decades of work has failed to turn up tighter relaxations, one should seriously investigate the
possibility thatno tighter relaxations exist However, proving such a statement may be related to P
vs. NP, since linear programming is complete fdrFhus it seems necessary to work with subfamilies
of linear relaxations. An integrality gap result for a large subfamily of relaxations may then be viewed
as a lower bound for a restricted computational model, analogous say to lower bounds for monotone
circuits [27] and for proof systems5]. An example is Yannakakis’s resul8d] that representingsp
(the exact version) using a symmetric linear program requires exponentially many constraints—this
ruled out some approaches te-FNP that were being tried at the time.

In this paper we prove nonexistence of tighter relaxations/&RTEX COVER among three fairly
general families of LPs. For all families we prove an integrality gap ofd1). An interesting aspect
of our result—also the reason for the paper’s title—is that no explicit description is known for the LPs
in the three families. However, we can show that they use inequalities that have a fairly local view of
the graph. This lets us construct graphs in which any minimum vertex cover must contain almost all
the vertices (in particular, it must contaih— o )n vertices wherex > 0 is very small), yet the all-22
solution (or something close to it) is feasible for each inequality. Since the complement of a vertex
cover is an independent set, and vice versa, our results may also be trivially rephrased to say that the
integrality gap of theNDEPENDENT SETproblem for our three families of LPs is unbounded, even
though the graphs witnessing these gaps have independent sets@frsize

In the first two families of relaxations we allow only the variabtesc, . . ., x, € [0, 1] for the vertices
and no auxiliary variables. Some such restriction seems necessary because auxiliary variables would
give the LP the power of arbitrary polynomial-time computations. The third family allows auxiliary
variables implicitly, but in a very controlled way—namely, as part of the “lift-and-project” procedure of

1Erratum: The conference version of this paper erroneously stated that proving such a statement is tantamount to proving
P # NP. However, it is actually an open proble®3] whether P= NP implies that thevERTEX COVER polytope has a
polynomial size description (where additional variables are allowed).
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Lovasz and SchrijverZ{4].

The first family consists of linear programs that can incladgtrary inequalities on any set @&
variables, for some small constant- 0.

The second family consists of linear programs containing inequalities witlléfact Usually one
defines “defect” for facets of th&lDEPENDENT SETpolytope (see for instanc@4, 23]); here we will
make an analogous definition for thkeRTEX COVERpolytope (i.e., the convex hull of all integra vertex
covers): The defect of @ERTEX COVER polytope face” x > b, wherea is a vector of integers ariol
an integer, is defined to bé2- y;a. The defects of such facets are always non-negafie Linear
programs in the second family are allowed those inequalities defining facets gEH®EX COVER
polytope with defect at mostn. An integrality gap of 2- o(1) for this family is a simple corollary of
the one for the first family.

The third family consists of linear programs obtained fr@fiogn) rounds of a “lift-and-project”
construction of Lo@sz and SchrijverZ4]. This is a method that underlies semidefinite relaxations used
in many recent approximation algorithms starting with Goemans and Williami€hn The LS proce-
dure over many rounds generates tighter and tighter linear relaxationg¥ayplimization problems.

It is more round-efficient than classical cutting planes procedures such as Gomadraid8jvsince it
generates every valid inequality in at mogbunds. Even in one round it generates nontrivial inequali-
ties forvVERTEX COVER Furthermore, the set of inequalities derivabl©ifl) rounds—this could be an
exponentially large set—has a polynomial-time separation oracle, thus allowing the Ellipsoid method to
optimize over this set. In general, one can optimize over the set of inequalities obtainedadieads in

n°) time. We show that at lea§t(logn) rounds of the_S procedure (the LP version, not the semidef-
inite version) are necessary to reduce the integrality gap belew(2).? Note that characterizing the

set of inequalities obtained in ev€{1) rounds has proved difficult; even the case of 2 rounds is open.

For the first family, better integrality gaps can be obtainedf@meEPENDENT SETthan those triv-
ially implied by our results fovERTEX COVER We show that for linear programs where each inequality
uses at most?3-?) variables (here,y > 0 are any small constants), the integrality gapIfayEPEN-
DENT SETis n'~¢. This is essentially tight since constraints usiigzariables can clearly approximate
INDEPENDENT SETwithin a factor ofn—¢,

Our techniques seem applicable to problems other WsRTEX COVER (andINDEPENDENT SE7)
and have been the subject of future woBk I, 30]. These developments are discussed in the related
work section below. However, several open problems remain. For example, extending our ideas to
semidefinite relaxations as well as to the semidefinite programming analogue of thezk®ehrijver
procedure remains a difficult and interesting open problem. We discuss this and other open problems
further in Section5.

We also note that the integrality gaps proverSiection2 are strong enough (namely, they apply
to LPs that we do not know how to solve iR time) that they may be seen as complementary to
PCP-based results. Even if it were shown using PCPg #hak)-approximation to/ERTEX COVERIS
NP-hard, the proof would probably involve even more complex reductions than thokd.inThus it

2Erratum: The conference version of this pap8t arguedQ(+/logn) rounds of the_S procedure were needed to reduce
the integrality gap fovERTEX COVERbelow 2— 0(1). However, Cheriyan and Qiaf][observed that the argument i8] fvas
incomplete. In the current paper we give a new (complete) proof df #reund lower bound. Independently, Qia26] also
provides a fix for the proof in3]. However, our new proof has the advantage of showing that in fact at@g&sgn) rounds
of LS tightenings are needed to reduce the integrality gap below(2).
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might reduce 3AT formulae of sizen to VERTEX COVERoON graphs of siza®, wherec is astronomical.

Even if we assumesaT has no 2" time algorithms, such a reduction would not rule out an integrality
gap of 11 (say) for the relaxations iGection2. In other words, even in a world with PCP-based
results, our methods may be useful for ruling out subexponential approximation algorithms that use
linear programming approaches.

Related work A few authors have viewed the Lasz-Schrijver procedure as a proof system and shown
thatQ(n) rounds are required to derive certain simple inequalities (e.g., Goemans and Th¢@bpk
and Dash9]). However, these papers do not consider the issue of hointbgrality gapimproves (or
fails to improve) after a few rounds of th& procedure. A recent (and independent) paper by Feige and
Krauthgamer 16] considers the question of integrality gaps, but for the maxinawm@UE problem on
a random graph with edge probabilities 1/2. They show @@bgn) rounds ofLS;, the semi-definite
version of Lovasz and Schrijver’s lift-and-project procedure, are necessary and sufficient to reduce the
integrality gap to 1 (with high probability over the choice of the graph). However, this result does not
directly give any lower bound on the approximability\dRTEX COVER since in their graphs both the
minimum (integral) vertex cover and the optimal value of the relaxations considered arenabout

Subsequently to our work there have appeared several papers proving integrality gaps for relaxations
using both the LP and SDP versions of the &sg-Schrijver lift-and-project method. Buresh-Oppenheim
et al. [6] show thatQ(n) rounds ofLS; are needed to obtain relaxations feax -ksAT, k > 5, with
integrality gaps less thaf2 — 1) /2 — e. Alekhnovich et al. {], building upon B], show thatQ(n)
rounds ofLS; are needed to obtain relaxations fo&X -3SAT with integrality gaps less thary8—e. In
addition they showed th&(n) rounds ofLS; are needed to obtain relaxations §&Tcoverand rank-
k hypergraphVERTEX COVERWith integrality gaps less thail — ) Innandk— 1 — ¢, respectively. Note
that PCP-based results (such as thoseasfthid P0], Feige [L5] and Dinur et al. 10]) already ruled out
non-trivial polynomial-time approximation algorithms for these problems (assumgyP). However,
they did not rule out slightly subexponential approximation algorithms (defined as those runnffg in 2
time for c < 1) for the reasons mentioned earlier, namely, the blowup in instance size caused by the
PCP-based reductions.

Tourlakis 0], building on techniques used in the current paper, provedQfilaiglogn) rounds of
LS are needed to obtain relaxations for rdnkypergraphvERTEX COVER with integrality gaps less
thank — €.

2 The first family

In this section we prove integrality gaps for linear program& Xy, . .., %} for bothVERTEX COVER

and INDEPENDENT SETwhere the programs allow any constraint of the faahx < b such that the
coefficient vectom is nonzero for at mostn coordinates. In other words, each constraint involves at
mosten variables. Such linear programs may have exponential size and may not have a polynomial-
time separation oracle. In fact, there are linear programs in this family for which finding such an oracle
would imply P= NP. We only require that all 0/1 vertex covers and 0/1 independent sets in the graph
are feasible for th# ERTEX COVERaANdINDEPENDENT SETrelaxations, respectively.
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The natural candidate graph for exhibiting integrality gaps for these relaxations would be one where
the largest independent set has size at mwostor some smallx > 0, but every induced subgraph on
en vertices has an independent set of size neamj{2. However, it turns out that the local property we
need for our graph is somewhat stronger: all small induced subgraphs havdraptahal chromatic
numberwhich we define below.

We will construct the required graph by the probabilistic methotliaorem 2.3 This result appears
to be new, although it fits in a line of results starting with & dL 3] showing that the chromatic number
of a graph cannot be deduced from “local considerations” (see also Alon and Sp&npet30).

Definition 2.1. A fractional y-coloring of a graphG is a multiset® = {Us,...,Un} of independent sets
of vertices (for som&) such that every vertex is in at ledéty members of2. Thefractional chromatic
numberof G is

x:(G) =inf{y: G has a fractionaj-coloring} .

Note that ifG has &-coloring with color classedy, ..., Ux thenC = {U;, ..., U} is also a fractional
k-coloring of G. Consequentlyy:(G) < x(G).

Remark 2.2. If x{(G) =y and{Us,...,Un} is a fractionaly-coloring for G, we will usually assume
without loss of generality that each vertex®f(by deleting it from a few of th&J; if necessary) is in
exactly Ny sets.

Note that strictly speaking, havings (G) = v does not guarantee that there exists a fractignal
coloring forG; it only guarantees a fractiongy + €)-coloring for alle > 0. Nevertheless, in the interest
of keeping our notation clean, we will always assume that a fractjeonaloring does exist (in particular,
we will only consider rationay). This slight inaccuracy will not affect the validity of our arguments.

Theorem 2.3. Let0 < a,0 < 1/2 be constants. Then there exist constghts f(«,6) >0and p =
no(a, B, 8) such that for every & ng there is a graph with n vertices and independence number at most
an such that every subgraph induced by a subset of at frosertices has fractional chromatic number

at most2+ 9.

LetH be the graph constructed Ttheorem 2.3with o, § arbitrarily close to 0 and le® be as given
by the theorem.

Theorem 2.4. The vector with all coordinate%i—g is feasible for any linear relaxation for H in which
each constraint involves at mg8h variables. Consequently, since any independent set is the comple-
246

ment of a vertex cover, and vice versa, the integrality gap is at [dasta) - 75

Proof. It suffices to show that the ag}g vector is feasible for any set of constrair{s x < by where
I C{1,...,n} has size at mosin.
So fix any subset of at mostSn vertices and lefU, ...,Un} be a fractiona(2+ 6)-coloring forl
such that each vertex inis in exactly a ¥(2+ 6) fraction of theU;'s (seeRemark 2.2. Note that each
I\ U; is a vertex cover in the subgraph induced land hence can be extended to a vertex cover of the
entire graph. By definition, the characteristic vector of any such vertex cover extensiorfpbeysb, .
So since these constraints only involve variables fioi follows that any vector iR" that has i,
(the characteristic vector of\ U;) in the coordinates correspondinglt also feasible foA, - x < by.
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Consider the vectong, v, ..., vy € R" wherey; is equal to },, in those coordinates corresponding
tol and is(1+ 6)/(2+ &) otherwise. Each such vector satisfigs x < by, so convexity implies that
the same is also true for the average ve(#()vl +V2+---+Wwy). Since each vertex ihlies in exactly
al-1/(2+9)=(1+9)/(2+ 9) fraction of the vertex covers, this average is the%%@—vector. Thus
this vector satisfiedy - x < by, as desired. O

Note that the same construction can also be used to prove integrality gaps for linear relaxations for
INDEPENDENT SET

Corollary 2.5. EveryINDEPENDENT SETlinear relaxation for H (where H is the same graph as above)
where each constraint in the relaxation has at m@stvariables has integrality gap at IeaﬁfleTE).

Proof. Let | be any subset of at mogn vertices and lefUy,...,Ux} be a fractional2 -+ §)-coloring
for | such that each vertex Inis in exactly a ¥(2+ 9) fraction of theU;’s (seeRemark 2.2. Now define
vectorsvy,Vy, ..., vy € R" as follows: Letv; equal 1, in those coordinates correspondingd tout have
vi equal %/(2+ &) outsidel. Then eacly, is feasible for all constraints involving variables only frém
But then, the average of ths, i.e., the vector with all coordinateg @+ 6), is also feasible for these
constraints. O

Denote the size of the maximum independent set in a g&aby o (G). The above argument in fact
yields the following more general theorem.

Theorem 2.6. Let G be a graph on n vertices such that every subgraph induced by a set of g (npst
vertices has fractional chromatic numb€rC. Then the vector with all coordinat%sis feasible for any
linear relaxation of thaNDEPENDENT SETconstraints for G in which each relaxed constraint involves
at mostf (n) variables. Consequently, the integrality gap for the relaxation is at IQ%E-

This suggests we can obtain larger integrality gapaN@EPENDENT SETIf we further limit the
number of variables in each constraint. 3ection2.2 below we show that this is indeed the case by
exhibiting graphs for whiclfheorem 2.6yields the following:

Theorem 2.7. Fix €,y > 0. Then there exists a constantf ny(e, y) such that for every o ng there
exists a graph G with n vertices for which the integrality gap of any linear relaxatiomNDEPENDENT
SETin which each constraint uses at mo$tin?) variables is at least ¢,

2.1 Proof of Theorem 2.3

The proof uses standard random graph theory supplemented with a couple of new ideas. Let us recall
the standard part (se@]]. If we pick a random grapls using the familiarG(n, p) model and choosp
appropriately, then the largest independent s& iras size at mostn and yet the induced subgraph on
every subset ofn vertices has an independent set of size cloggni®. By deleting a few edges—too

few to disturb anything else—we can assume tBditas no small cycles (i.e., has high girth). Finally,

we will show that these induced subgraphsfimvertices also satisfy a sparsity condition; this latter
property appears to be previously unknown.
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We then show inLemma 2.13that every high girth graph satisfying this sparsity condition has
fractional chromatic number-2 6 on every induced subgraph with at mg@st vertices. The proof uses
induction on the subgraph size. The main idea in the inductive step is to exhibit a long path inside
every subgraph usingpemma 2.12 Peeling away the path gives a smaller subgraph that is colored
(fractionally) using the inductive assumptidremma 2.1%s then used to extend this fractional coloring,
completing the induction.

Now we give details. The next lemma concerns the “standard random graph theory” mentioned
above, together with the new sparsity condition.

Lemma 2.8. Given real numbers,  with0 < & < 1/250and0 < n < 1/2, let A > € and 3 > 0 be
such that

2'07%A <a (2.1)
and
B < (er)"2/m . (2.2)

Let g> 3 be an integer such thatg logn/(3logA). Then there is an integepr= np(A,1n,9) such that
for every n> ng there is a graph H of order n, girth at least g and independence number at amost
such that every subgraph of H with< fn vertices contains at moét + )¢ edges.

Remark 2.9. Condition @.1) is satisfied if we take
A= (3/a)log(1l/a) .

Proof ofLemma 2.8 Let us consider the space of random graghs p) with p= A /n. We will show
that a graplG, p drawn randomly from this space, modulo a few small alterations, satisfies with high
probability the three properties requiredtdfin the statement of the lemma.

Let 0< op < a be such that

1+log(1l/ap) < Aop/2 . (2.3)

Inequality @.1) implies that we can choose such af In order to avoid unnecessary clutter, in what
follows, we shall drop the integrality signs (in particular, we shall weiga instead off apn]); this slight
inaccuracy will not endanger the validity of the arguments. Also, as usual, we shall assumie taaje
enough to make our inequalities hold.

1. The probability that for somé, 4 < ¢ < 1/n, some(-set inGp, p spans at leagt+ 1 edges is at

most
1/n n (é) & +1 - 1/n <@)[ e/f(€2+1) +1 & +1
;4 ¢)\£+1)\n - 24 14 (+1 n

1 1/n€ (e%)”l

Tend, \ 2
=0(n?Y) .
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Similarly, the probability that for somé& 1/n < ¢ < Bn, some/-set spans at leaét + )¢ edges

is at most
n ‘ ) [
20GEIET =L@ 0)
) ﬁz ey’ (2.4)
t=1/n

We bound 2.4) by first splitting the sum into two quantities and bounding each of them: Letting
C = €A1 we have that,

< & ! Yn+lq Vi=1/n
1m)¢ CY_(C 1-(C/vn) ol
[:%n [€2(¢/n)1A 1] Se—%n<ﬁ> <ﬁ> 1 (C/um o(n Y

On the other hand2(2) implies thatD = 28712 < 1, and hence,

Bn Df+l

[(¢/nn )’ zn = =0 .

(=y/n+1
So, @.4) is at mostO(n~1).
Hence, the probability thall ¢-sets, < Bn, in Gy p span at mostl+ n)¢ edges is at least
1-0(n™1).
2. Letl =1(Gp,p) be the number of independent setg afn| vertices inGy, p. Note that

opn

- () (57 (e

Inequality @.3) implies thaty, < 1, so the probability thab, , contains an independent setain
vertices is exponentially small.

3. Call a cycle inGy,  shortif its length is less thag. The expected number of short cycles is less

than . , .
g-1 ¢ g ¢
5 (5) -5 e
S 0o\n =

By Markov’s inequality,Gn p has at mosh'/? short cycles with probability at least-10(n~/¢).
Deleting an edge from each of these cycles then gives a graph of girth ag.least

Consequently, with probability 2 O(n~1/6), Gn,p has no set of < Bn vertices spanning more than
(1+n)¢ edges, and moreover, if we delete an edge from each short cycle then the independence number
of the new graptH = G, , is at most

oon++/n< an .

This graphH has the required properties. O
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Now we establish some basic propertiegef It is easy to check that a path with at least one edge
has fractional chromatic number 2. In particular, a graph has fractional chromatic number less than 2 if
and only if it is an independent set. The proof of the next lemma is left to the reader.

Lemma 2.10. 1. If Cx denotes the cycle of length k thgn(Cy) = 2 and xt (Cyri1) = (204 1) /4.
2. If [V(G1)NV(Gy)| < 1theny;(G1UGz) = max{xt(G1), xt(G2)}.

The next Lemma concerns the fractional chromatic number of a graph that contains a long path (i.e.,
the vertices on the path’s interior have no edges outside the path edges).

Lemma 2.11. Let/ > 2 and let G be a graph obtained by adding a pagxx..x,,1 to a graph G,
where %, %41 € V(G') and % ¢ V(G') for 1 <i < . Theny(G) < max{x:(G'), 25 }.

Proof. Let x:(G') = 1/v and suppose first that> 1/2. ThenG is an independent set and the lemma
follows since paths have fractional chromatic number 2.

So assume < 1/2. By Remark 2.2we can assume without loss of generality that there exists a
multisetC’ = {U;,...,U{} of independent sets i&' such that every vertex d& is in exactlyyN of
these sets. So sineg € G' andy < 1/2, there exists a multiset containing exactlyN /2 sets from®’
such that no set irl containsx. Similarly, there exists a multisét of N/2 sets taken frone’ such that
no set inB containsx, ;.

Fix i, 1 <i <n. We will define a colouring®; for G\ {xi} (i.e., G with x; removed) by extending
the setd)/ in € to independent sets, in G\ {x }. Moreover, our colouring will have the property that
eachxj, 1 < j </, j # i will be in exactly half the sets d;. Our approach will be as follows: Fix a set
Ul e €. If U € A we will then add tdJ;, every other node in the path fragment fraqto x;_1 starting
with x: That is,x1,X3,Xs, ... will be in U, butx, Xs,... will not. If insteadU;, ¢ A thenxy, Xa, X, - . -
will be in Uy, butxy, Xs, ... will not. Similarly, we will decide which of the nodeg, 1,X2,...,X, to add
to U, depending on whether or nof, is in B. SinceA andB each contain exactly half the sets@f it
will follow that eachx;, 1 < j </, j #1, is in exactly half the sets df;.

Formally, the exact construction is as follows: Elk € €. For 1< j <1, if U] € A then addx; to
Uy if j is odd; if instead)/, ¢ A then addk; to Uy, if | is even. Foi < j </, if U] € B then addk; to Uy,
if £— jis even; if instead)/ ¢ B then add; to Uy, if £— j is odd.

Let © = UC;. This multiset ofN sets is then a fractional colouring f@&. Note that every vertex of
G isin y/N sets ofC. Moreover, every, 1<i </, isin %(E — 1)N sets. Consequently, every vertex of
Gis in at least a mifty, ‘5! } fraction of the sets of. Hence,x(G) < max{3, 1 }. O

For realk > 1 call a graphk-sparseif it has no subgraph witlf vertices and more thak? edges.
Hence, sparsity quantifies (half of) the maximum average degree of subgraphs. This concept is closely
related to that oflegeneracyRecall that a graph is-degeneratd every subgraph has a vertex of degree
at mostk. Hence, ifk is a natural number anel > 0, then a(% — €)-sparse graph ik-degenerate;
conversely, everk-degenerate graph kssparse.

Recall that a graph i&-connectedf there does not exist a set &f— 1 vertices whose removal
disconnects the graph. By length of a path we will mean the number of edges.
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Lemma 2.12. Let¢ > 1 be an integer and < n < ﬁ and let G be a 2-connectdd + n)-sparse
graph which is not a cycle. Then G contains a path of length at léast whose internal vertices have
degree2in G.

Proof. Suppose thab hash vertices and does not contain a path of lengythl with ¢ internal vertices

of degree 2 inG. SinceG is a 2-connected graph with more edges than verti@egnsists of a certain

k > 2 number of branch-vertices (i.e., vertices of degree at least 3) and the induced paths joining them,
sayPi,...,Pn, wherem > [3k/2], and all internal nodes in these paths have degree Z; ket denote

the length of®. Then,

m
n=k+ Z(&—l):k—ere(G)gk—m+(1+n)n :
i=
and som—k < nn. On the other hand,
m
n=k+ Zl(fi—l) <k+m(-1) ,
i=

and hencen—k < n(k+m(¢—1)). But then, sincen > [3k/2], it follows thatn > 1/(3¢/—1), a
contradiction. O

Lemma 2.13. Let h> 2 be an integer an® < n < Tﬁz Then every1+ n)-sparse graph G of girth
at least2h hasy(G) < 2+ 2.

Proof. We use induction on the number of vertices. The base case is trivial. Assume the statement is true
when the number of vertices is at mosandG is a graph withm—+ 1 vertices. If it is not 2-connected, it

has a vertex whose removal disconnects the graph and hence we can complete the inductive step using
part 2 ofLemma 2.10So assum& is 2-connected. Ifitis a cycle then its length must be at lelasa2d
hencey; is at most 2|—% by part 1 ofLemma 2.10So assum& is not a cycle. But then, byemma 2.12

G contains a path of lengti+- 2 whose internal vertices have degree BGirLet G’ be the graph obtained

from G by deleting these internal vertices (together with the edges incident with them). By the induction
hypothesisy(G') < 2+ 2, and so byremma 2.1we havey;(G) = max{x;(G'),2+ 2} < 2+ 2. This
completes the induction and the Lemma is proved. O

We can now provdheorem 2.3

Proof of Theorem 2.3Seth = [2/6], g=2h andn = Wia Chooseld > € and 8 > 0 to satisfy
inequalities .1) and @.2). LetH be a graph of ordem whose existence is guaranteedliymma 2.8
Thus,H has independence number at mast and if G is a subgraph oH with at mostfin vertices
thenG is (1+ n)-sparse and has girth at legst 2h. Hence, byLemma 2.13x¢(G) < 2+% <246,
completing the proof. O
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2.2 Proof of Theorem 2.7

Throughout this section, log will denote base-2 logarithms.

By Theorem 2.6to obtain a large integrality gap we need to construct graphs where the indepen-
dence and local fractional chromatic numbers are as small as possible. One way to do this is using graph
products.

Definition 2.14. Theinclusive graph product G H of two graphsG andH is the graph oW (G x H) =
V(G) x V(H) where{(x,y), (X,y)} € E(Gx H) iff (x,X) € E(G) or (y,Y) € E(H). The notationGX
indicates the graph resulting by taking tkéold inclusive graph product d& with itself.

The key observation is that(G x H) = o(G) x ao(H) and s (G x H) = x(G)x(H) (the former
fact is easy; for the latter se&4] for a proof). Moreover, if all sets of size at mgsh have fractional
chromatic numbe€ in G, then all sets of size at mogh in G¥ have fractional chromatic numbeX.
So taking products of a graph with itself drives down the relative sizes of both the independence and
local fractional chromatic numbers. However, since the resulting graph is much larger, the fractional
chromatic number is small only for negligibly sized subgraphs. To get around this we instead consider
an appropriately chosen (small) random subgrapks'of The particular construction we use is due
to Feige [L4]. By choosing each vertex @& independently at random with probability(G)* and
analyzing the resulting induced subgraph, Feige proves the following theorem (we sketch a proof below
for completeness; se&4] for details):

Theorem 2.15 (Feige 14]). There exists an integeprsuch that for every graph G onx ng vertices
and any integer k, there exists a graph €ch that:

1. Gy is a vertex induced subgraph ofG

) k
2 Hlafl) < V(G < 2(af)"

ka(G)Inn
3. a(Gk) < Fra@yim -

Proof. (Sketch) Select each vertex 6F independently and at random with probabilifG)*. Let
G be the induced subgraph 6 obtained by this process. We show ti@satisfies the above three
properties with high probability.

By constructionG is an induced subgraph &. Moreover, the probability tha¥/ (G)| deviates by
more than a factor of 2 from its expectation is negligible. For the last property, fix a maximal independent
setl in GX. The expected number of vertices frarm G is at most 1. Chernoff bounds sharply bound

the probability that more tha, l((lscoE?C)%)lrllnnn) vertices ofl survive inG. The last property can now be seen

to hold with high probability by observing th& contains at most*(® maximal independent sets and
by observing that all maximal independent setSlnare the direct product d maximal independent

sets inG. In particular, the probability that more th E‘Og(Gg)'Tn”n) vertices of any maximal independent
set ofG¥ survive inG can be shown to go to O agrows. O

Our strategy for provingheorem 2.#vill then be as follows: We will start with a grap® where
both the independence number and local fractional chromatic number are already small (such a graph
will exist by Theorem 2.3and then apply Feige’s randomized graph product to it.
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Now the details. Fix arbitrarily small constanitsé > 0 andn > 0 such thah > ng whereng is from
Theorem 2.15Provided thah is chosen sufficiently larg&heorem 2.3mplies that there exists a graph
G onn vertices such that(G) < an and such that for some constght> 0, all induced subgraphs &
with at mostBn vertices have chromatic numbe€r2+ 6.

Fix an arbitrarily small constamt > 0 and letGy be the graph given byheorem 2.1%or k = dlogn.
LetN = |V(Gy)|. Note thatN = O(a ) = ©(nd'°9(1/2)) On the other hand, all subsets@f of size at
most

ﬁn:G)(Nmeul(/l?oc)) (2.5)

have fractional chromatic number (2+ §)X.

By Theorem 2.6t follows that any linear relaxation of the independent set constrainSgavhere
the relaxed constraints contain at mfstvariables has integrality gap (tk&notation indicates asymp-
totic order up to logarithmic factors):

—k
o
© ( 248 k _kanlnn
(2+ ) R(kanin)
Since we can take andd to be arbitrarily small inTheorem 2.3providedn is large enough), and since

d > 0 can also be chosen arbitrarily small, it follows that we can simultaneously rAdjar(ore than
Né(-%) and @.6) more tharN'~¢. The theorem follows.

) _ 6 (nd(log(l/a)flog(2+6))fl> _5 (Nl = ‘7&;'?3/(35)> . (2.6)

3 The second family

For ann-vertex graphG, let VC(G) denote the convex hull of all integral vertex covers @ri.e., the
convex hull of all 0/1 vectors € R" satisfyingx +x; > 1 for all edges{i, j } in G. All non-trivial facets
of the polytope VGG) can be expressed in the fomhx > b wherea ¢ Z\i andb € Z . (By non-trivial
we exclude facets of the form > 0 andx < 1, and require that at least two coordinatesi@fre non-
zero.) Note moreover that the non-trivial facetsaofy relaxation for VGG) lying in [0, 1]" must also
be of the forma™x > b wherea € ZY andb € Z,..

While VC(G) requires exponentially many non-trivial facets to completely specify, it may be that
a smaller subset of these facets yields a linear relaxation with integrality gap less-thafo2 some
€ > 0. In this section we consider relaxations defined by those facets ¢GYRaving low defect.

The defectof a faceta’x > b of VC(G) is defined to be B— 5;a. It follows from the proof of
an analogous result for the Independent Set polytope basoand Schrijver4] that this quantity is
always non-negative for facets of \(G). For more about defects of facets s24][and also Lipék and
Lovasz P3].

We now generalize the results $éction2 to any linear relaxation forERTEX COVER defined by
facets of VGG) with defect at mosén:

Theorem 3.1. For all ¥ > 0 there exists a constamt> 0 such that the integrality gap is at lea®t- y
for any relaxation forvERTEX COVER consisting of inequalities of the fornTa> b (a€ Z},be Z,)
and defect at mosn.
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Proof. Let &, 8 > 0 be constants such thgt — oc)ﬁ—g > 2—1v, and letH be the graph constructed in
Theorem 2.3or these constants. Let the defect of our relaxation be at emostheree = 85/(2+ ).
The theorem will follow by showing that the vectey with all coordinateg1+ 6)/(2+ 0) is feasible.
There are two types of facetdx > b. If T;a < fn then the constraint only involve8n variables
and so the feasibility of the vecta follows as inTheorem 2.41f ;& > Bnthen the feasibility ok

follows by direct substitution:

1+8 5
232.5 - 2%22v8) T22%  22v6) 228 2 T22% 20

[E

=)
>
=2
[EEN
m
=
[E

O
4 The third family
Consider the standard relaxation f(ERTEX COVER
X+x;>1 v{i,j} €E (Edge constraint 4.1)

In this relaxation theq’s are real numbers if0, 1]. Suppose we wish to tighten the relaxation to force
thex’s to be @1 in any optimal solution. To this end, we could introduce any constraints satisfied by
0/1 vertex covers. For instance, tkés can be required to satisfy for every odd-cyCle

in > Cl+1 (Odd-cycle constraint 4.2)
i€ 2

Many other families of inequalities satisfied by 0/1 vertex covers are known, but a complete listing will
probably never be found because of complexity reasons.

Lovasz and SchrijverZ4] give an automatic method for generating over many rounds all valid
inequalities. More generally, they give a method for obtaining tighter and tighter relaxations for any
0/1 optimization problem starting from an arbitrary relaxation. The idea is to “lifi‘taimensions
and then project back to-space. This is why the procedure is called “lift-and-project” or “lifting.”
The motivation is to try to simulate the power of quadratic programs. Solving quadratic programs is of
course NP-hard since adding the constraints— x;) = 0 to a linear relaxation forces 0/1 answers. For
example, all 0/1 vertex covers satisfy

X2 =X (4.3)
(1-x)(1-x;)=0 v{i,j} €E . (4.4)
To linearly simulate these constraints, we can introduce new linear vargptesrepresent” the prod-
uctsxx; and then demand that the “lifted” variables satigfy- Y and 1—-x — x; +Y;; = 0 for all edges
{i,j}. We can then take positive linear combinations of these constraints to eliminate all “quadratic”

terms and obtain constraints using only the original variakles
Formally, given a relaxation

ax>b r=12..m (4.5)
0<x <1 i=12....n, (4.6)
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one round ofLS produces a system of inequalities (in+ 1)? variablesYjj fori,j =0,1,...,n. As
already mentioned, the intended “meaning” is thiat= xx; andYgo = 1, Yo = XiXo = X, andYpp = 1 S0

every quadratic expression in tRgs can be viewed as a linear expression inYh&. This is how the
guadratic inequalities below should be interpreted. The following inequalities are derived in one round:

(1—x)a x> (1—x)b Vi=1,...,n, Yr=1,....m
xal x> xb Vi=1,...,n, Yr=1,....m
XiXi = X Vi=12,...,n

The last constraint corresponds to the fact #tfat x; for 0/1 variables. Since any positive combination

of the above inequalities is also implied, we can use such combinations to eliminate all non-linear terms.
Lovasz and Schrijver show that every inequality valid for the integral hull is generated in at most

n rounds. Moreover, they show that the set of inequalities derivable in one round feEHEX

COVER relaxation are exactly the odd-cycle inequalities. To illustrate, we now show how to derive in

one round the odd-cycle inequality + x» + X3 > 2 for a triangle on node$l,2,3} starting from the

edge constraintgl(1). One round of_.Sgenerates the following inequalities (amongst others):

(I—x)(X1+x2) >1—x 4.7)
(1—X2)(X2+X3) > 1—X2 (4.8)
(1—X3)(X1+x3) >1—x3 (4.9)
X1 (X2 +X3) > X1 (4.10)
X2(X1 +X3) > X2 (4.11)

Adding inequality 4.7) twice to the sum of the remaining four inequalities and then simplifying using
the rulex? = x; givesx; + Xz + X3 > 2 as desired.

No exact characterization exists for the inequalities derivable in subsequent rounds. However, we do
know that the set of inequalities derivableGxil) rounds has a polynomial-time separation oracle. For
more details see2H)].

To understand our results, the reader only needs to know the next Lemma take&4yamd which
gives an alternate characterizationlLd liftings useful for proving lower bounds. The notation uses
homogenized inequalities. Let F&) be the cone iR™? that contains a vectaixo, Xy, . .., %) iff it
satisfies 0< x; < xg for all i as well as the edge constraimst x; > Xo for each edgdi, j} € G. All
cones below will be iR"! and we are interested in the slice cut out by the hyperplarel. Denote
by N"(FR(G)) the feasible cone of all inequalities obtained fromounds of the_Slifting procedure.

Let g denote thath unit vector so that¥e denotes théth column ofY. The next lemma defines the
effect of one round.

Lemma 4.1 (R4)). If K is a cone inR™1, then xe N™(K) iff there is an(n+ 1) x (n+ 1) symmetric
matrix Y satisfying

1. Y =diag(Y) =x.

2. For1<i<n, both Yeand Y(e — ) are in N™1(K).
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Following [6] we will call the matrixY witnessing thak € N™(K) in the above lemma protection
matrix since it “protects’x for one round oL Stightening.

In practice, we will only be concerned with showing that vectorss R™?! with xo = 1 survive a
round of lifting. For such points, we have the following corollaryLeimma 4.1

Corollary 4.2. Let K be a cone ifR™! and suppose g R™* where % = 1. Then xc N™(K) iff there
isan(n+1) x (n+ 1) symmetric matrix Y satisfying

1. Yg =diag(Y) =x.

2. For1<i<n: Ifx; = 0then Ye=0; If x; = 1 then Ye= x; Otherwise, Yexi,Y(eo—a)/(1—X)
both lie in the projection of R—1(K) onto the hyperplaney= 1.

Our main theorem for this section is the following:

Theorem 4.3. For all € > 0 there exists an integeprand a constand (&) > 0 such that for all n> n,
there exists an n vertex graph G for which the integrality gap 'dfR(G)) for any r < 6(¢)logn is at
least2 — €.

The proof ofTheorem 4.3elies on the following two theorems. The first (which also follows as a
subcase from the arguments used to plovama 2.8 is essentially due to Efi$ [12]; see Bollokas H],
Theorem 4, Ch VII. The secondheorem 4.5will be proved inSection4.2 with an overview of the
argument first given ifsectiond. 1

Theorem 4.4. For any o > 0 there is an (o) such that for every o no(c) there are graphs on n
vertices with girth at leasbgn/(3log(1/)) but no independent set of size greater tlvan

Lety, denote the vectofl, 3 +7v,3+7,...,3 +7) where 0< y < 3.
Theorem 4.5. Let G= (V, E) havegirth(G) > 16r/y. Theny € N'(FR(G)).

Proof of Theorem 4.3 Let y = ¢/8 anda = ¢/4, and letng be the constant fromiheorem 4.4or this
o. Forn> ng, let G be then-vertex graph given byfheorem 4.4 Finally, letd(e) = W. Then
by Theorem 4.5y, is in N"(FR(G)) for all r < 6(¢e)logn, and hence, the integrality gaps for all these
polytopes is at least(2 — @) /(1+2y) > 2—¢. O

4.1 Intuition for Theorem 4.5

Lemma 4.1(andCorollary 4.9 suggest using induction to profi@eorem 4.5We first will identify for

eachj some large set of vectors within each polytdpEFR(G)) called the “palette” foN! (FR(G)).

In stagej of the induction we will show the following: For each vectoin the palette foN! (FR(G)),

there exists a protection matrik such that for alii € [n| the vectorsyq andY(ey — &) all lie in the
palette for the previous polytopél —(FR(G)) (Figure 1. The condition that such a protection matrix
exists can be expressed as an LP. Hence, to show that a protection matrix exists foinghelpalette

for NJ(FR(G)) we show using Farkas’s lemma that the LP is feasible. The theorem then follows since
our definition for the palette fd¥" (FR(G)) will ensure that it containg,.
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FR(G) N“Z(FR(G)) N'~Y(FR(G)) N"(FR(G))
Yy
“Palettes”

Figure 1: Chain of dependencies in the prooTbeorem 4.5Each palette is contained in its respective
polytope because some other palette is contained in the previous polytope.

Since our protection matrices will be found using LP duality, we will pick the simplest palettes
possible in order to ensure that our LPs are also as simple as possible (and hence easy to analyze). To
understand what desirable properties the palette vectors should have, let us look at the simpler problem
of showing thaty, € N(FR(G)) (rather than showing, € N"(FR(G))) and make some observations
about the constraints the conditionsGorollary 4.2force upon a protection matrix fo,.

To that end, consider the projected “cqumNsé/yg,i) andY (e — a)/(l—yg,i)) of Y (from condi-
tion 2 of Corollary 4.3. These vectors must satisfy the edge constraints. As will be sho&&dtion4.4
(see equatior4(14), the constraints forcing this are given by the following constraint:

o <Yij+Yk<ai+ (o +ox—1) Vie{l,...,n},¥{j,k} €E . (4.12)

Fixi. If j; is adjacent ta, then @.12) implies% +7<Yi+Yij, < % + 3y. SinceY is a protection matrix
for y,, it must satisfyYj = yg,') = %—k Y. Hence, 0<Yjj, < 2y. Now consider a nod¢, at distance
2 from j1. Then @.12), together with the fact that 8 Y;;, < 2y for all j; adjacent ta, imply that
2 —7 <Yk < 3+3y. Inturn, for a nodejs at distance 3 from we must have & Yij, < 4y; and for
a nodej, at distance 4 from we have% -3y <Yjj, < % + 3y. So asj gets further and further from

the constraints ol; implied by @.12) get looser and looser so that for nodesufficiently far fromi

(distance 2y more than suffices) no constraint ¥ is implied. So intuitively, for such) we should be

able to choosgjj such that nodg remains% + v in both Yq/y$) andY(ep—e)/(1— yg,')). Note that

the fact that the coordinatesygfare% + yinstead of% is crucial in ensuring that the effects of the edge
constraints die out as we get further away from nioddote also that we have implicitly assumed that our
graph has girth larger thary2 so that two nodes cannot be connected by two paths of different lengths
both less than 2y—intuitively this is why Theorem 4.5equires large girth. We should also mention
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that we have simplified things by ignoring constraints requiredbyollary 4.2forcing the projected
“columns” to lie in [0, 1]"1: these tighten the above constraints onfex bit but the intuition given
above is mostly unchanged.

In any case, the above suggests that to pye\veN(FR(G)) we could use a palette consisting of all
vectors in FRG) which are% + v everywhere except perhaps on some ball of radjysr2 G. As such,
we can add “palette constraints” to the LP definihdorcing all nodesj distant fromi to be% +7in

bothYe/yg,') andY (ep— a)/(l—yg)). In fact, sincey must also be symmetric, the actual constraints we
will add will force the following: for all pairs of nodes j with distance at least/Z between them, the
jth nodes inva /y,) andY(ey—&)/(1—y,'), and theith nodesrg /) andY (ey—e;j) /(1 —yi)) must
allbe+7y.

The proof ofTheorem 4.5will use generalized versions of the above palette: The palettes for each
polytopeN! (FR(G)) will consist of vectors from FRG) that are% + v except in a few neighbourhoods
(seeDefinition 4.6in Sectiond.2for the precise statement). For a vectan the palette foN! (FR(G))
the LP used to find a protection matrik for x will have two types of constraints: constraints that
forceY to satisfy the conditions i€orollary 4.2and constraints that force the “columngg/x and
Y(ep—6&)/(1—x) to belong to the “palette” foNI~1(FR(G)).

The palettes we will use will have the following property: The diameter of the largest neighbourhood
H in G such thaH consists entirely of nodes with values not equa%teywill grow linearly with the
number of rounds. Hence, our method is limited to proving integrality gaps for at@ftmin) rounds
since only graphs with girtD(logn) yield large integrality gap$.

4.2 Proof of Theorem 4.5

The theorem will be proved by induction where the inductive hypothesis requires a set of vectors other
than justy, to be inN™(FR(G)) for m < r (the “palettes” fromSection4.1). These vectors will be
essentially allé% +7), except possibly for a few small neighborhoods where the vector can take arbitrary
nonnegative values so long as the edge constraints are satisfi&hlL@, R) denote the set of vertices
within distanceR of win G.

Definition 4.6. Let SC {1,...,n}, R be a positive integer ang > 0. Then a nonnegative vector

(0, 01, .., 0n) € [0,2]" 1 with ap = 1 is an(S,R, y)-vectorif the entries satisfy the edge constraints
and if for eachw € Sthere exists a positive integBy, such that

1. Sues(Rut2) <R
2. For distinctw,w € S, Ball(w,Ry) nBall(w,Ry) =0
3. aj = 3 +yfor eachj ¢ UnesBall (w,Ry)

We will say that the integerfRy },,.s Withessthat o is an(S R, y)-vector.

3In the conference version of this papét, the palettes were picked such that the diameter of the largest neighbourhood
grewquadraticallyin the number of rounds, thereby yielding integrality gaps onlyd6y/logn) rounds.
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LetR" =0 and letRM = RM) 4 % for 0 < m<r. Note that K™ < girth(G) for0<m<r. To
proveTheorem 4.5ve will prove the inductive claim below. Since the se(O,fR“),y)—vectors consists
precisely of the vectoy,, the theorem will then follow as a subcase of the caser.

Inductive Claim for N"(FR(G)): For every seBof at mostr — mvertices, everyS R™ y)-vector is
in N"(FR(G)).
Base case m: 0. Trivial since(S,R?), y)-vectors satisfy the edge constraints Gr

Proof for m+ 1 assuming truth for m.Let o be an(S,R™Y y)-vector wherelS <r —m—1. To
show thata € N"(FR(G)) it suffices to find a protection matriX for a satisfying the properties of
Corollary 4.2 We exploit the structure dfS,R, y)-vectors and prove some important structural properties
of these vectors ihemma 4.7which then enables us to argue that such a protection matrix exists thereby
completing the induction step.

Note first thato is trivially an (SUi,R™, y)-vector for anyi € G. Lemma 4.7 which we now state
and prove inSection4.3 below, says that for appropriate s&s|S| <r—m, a is also an(S,R™  y)-
vector enjoying crucial additional structural properties.

Lemma 4.7. Let i be such that; ¢ {0,1}. Then there exists a set S {1,...n}, |S| <r—m, and
positive integers{R\(Nm)}WGS such that,

1. ais an(S,R™, y)-vector with witnesse&R{"” hwes

2. i € Uyes Ball(w,RY")

3. For each? ¢ UyesBall(w, R\(Nm)), any path between i anélin G contains at Ieas§ consecutive
vertices such thatoy = 2 +y
By the induction hypothesis, for ar§ C {1,...,n} such thatS| <r —m, every(S,R™, y)-vector

is in N"(FR(G)). Hence, to show thax € N™1(FR(G)) it suffices byCorollary 4.2to exhibit an
(n+1) x (n+1) symmetric protection matriX that satisfies:

A. Yg=diaglY) =a,

B. For eachi such thate; = 0, we haveYe = 0; for eachi such thato; = 1, we haveYeg = Ye;
otherwiseYe/o; andY(ep—g)/(1—o4) are(S, R y)-vectors, wher& as well as the integers

{R\S\,m)}wes witnessing that these vectors d&, R™ y)-vectors are given biemma 4.7or i.

We will complete the proof of the induction step (and hencé&laforem 4.p5by showing inSection4.4
below that a matrix exists satisfying condition& andB.

4.3 Proof ofLemma 4.7
Let {R™ ™1 cs witness that is an (S, RM™Y), y)-vector and le€ = UyesBall(w, Ry ™). There are
two cases depending on whettiall (i, %) intersect<C or not.
In the first (easy) cas@all(i, 2) does not intersed. Then let§ = Su {i}, let R™ = 2, and let
R\(Nm) = R\(Nm“) forwe S Itis easy to see that the conditions of the lemma are satisfied by these choices.
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So consider the second case whBa (i, %) does intersectS. Let

T, = {we S:i e Ball <V\/,R\(Nm+1)+i>} .

That is, T; consists of all points irs whose balls, slightly enlarged, containNote that it may be that
i €S inwhich case € Tj.
Now let

D= [ Ball V\I,R\Evm+l)—|—g .
Y

weTy

Sincey yes(RIMY +2) < R < 1 2irth(G) — 2, it follows thatD is a tree. Letj be a longest path in
D and letw; be a noJe in the mlddle of this patr\ Then certainly,

D C Ball (wl, Zr <R\(Nm+l) + 2))
we l1 y

We will now increase the size of this “big ball” around (perhaps also moving its centre in the process)

until there are no point& € Soutside the “big ball” for whichBall(w, R\(Nm“) + 72,) intersects the “big
ball”. We do this as follows:

Supposeaall(wi, 3 e, (Rw R Y 4+ y)) intersectBall(w Rﬂm“ ) for somew’ € S\T;. Addw to
T1 and call the new séf,. Reasoning as before, there existsc G such that,

U Ball (W, Rsvml)+2) c Ball | we, 5 <R5vm“>+2)
weTs 14 weT, Y

In general, at staggif Ball(wj, Y e, (R\(Nm”) + %)) intersectBall(w, R(Ar/n+l> + 72/) for somew € S\Tj;,
then addw’ to Tj, call the new seTj.1, and find a newv;j, 1 € G (using again the same arguments as
before) such that,

U Ball (vv, RSV”””+2> C Ball (wm, Z (RSV”‘“)+2>>
WeTj 1 14 weTj1 Y

Continue in this way until the first stagefor which no pointw’ in S\ Ty such thaBall (W, R(,\',"H) + %)
intersectsall (Wi, 3 wer (R + 2))- LetT = Ty andu = w.
We can now defing and{R\y" lues: Let§ = (S\T)U{u}. Forwe S\T, letRy” = RI™Y; let

E ()
= -+ R 7+~
Y W; 14

To complete the proof of the lemma we need to show thistan(S,R™, y)-vector witnessed by these
{R\(Nm)} and that the remaining two conditions in the statement of the lemma are satisfied.
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Note first that
2 2 2
RV + ) = (RSV’") + ) + (R&’m + )
wgs ( Y we%\T Y Y
2 y 2\ 4
= RSVm+1)+>+ (R\(Nm”+>+

=2 <R5vm“)+2> e L g
WES v, 14

RM

The inequality above follows from the fact thatis an (S, R(m“),y)—vector witnessed by the integers

R Hencea satisfies condition (1) of being 48, R™, y)-vector witnessed by the intege[lﬁ(,vm)}.
Next note that by constructiorBaII(u,R&m)) does not interseat)cs tBall(w, RSVm)). Moreover,

sincea is an(S,R™Y y)-vector witnessed by the integeRY™ Y| it follows that

Ball(w,R{") nBall(w,R™) = 0

for distinctw,w € S\T. Also, by constructiong; = %er for all j & UyegBall(w, R\(,\,m>). Henceo

satisfies conditions (2) and (3) of being &, R™, y)-vector witnessed by the integefB{" }.
Next note that by construction, we have on one hand that

| Ball (w, RV + i) C Ball (u, R™ - i)

weT

On the other handBall(u,R{™) does not interseetis rBall(w, Ry ). Sincea is an (S RM ) y)-
vector withessed by the integd%,m*”, it thus follows from the definition of such vectors that for all
verticesk in Ball(u,R™)\Ball(u,R{"™ — 2), we haveay = 5 + 7. Hence condition (3) of the lemma
holds.

Finally, condition (2) of the lemma holds since by construciienJ,,.t Ball(w, R\(,\,ml) + %). The
lemma follows.

4.4 Existence oY

We will show thatY exists by representing conditiodsandB as a linear program and then showing
that the program is feasible. This approach was first use@4hgnd subsequently in the conference
version of this paper.

Our notation will assume symmetry, namely, will representy;; j;. ConditionA requires that:

Yik = Ok, Vke{l,...,n}. (4.13)

ConditionB requires that the vectog/o; andY (ey — &) /(1— ;) are(S,R™, y)-vectors. In par-
ticular, we need constraints on the variabfgdorcing these vectors to satisfy both the edge constraints
as well as the extra structural properties enjoyeda);R(m), Y)-vectors.
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The following constraints imply thafe /o andY (ep — &) /(1 — «;) satisfy the edge constraints: For
allie{1,....,n} and all{j,k} € E:

oi <Yij+Yk<a+(aj+ou—1), (4.14)

To see that the above inequalities foite/o; andY (e — &)/(1— a;) to satisfy the edge constraints
note first thatr g/ o; satisfies the edge constraint for some eflg&} iff the jth andkth coordinates of
Ye/a; sum to at least 1. In equations, this requivggo; + Yik/a > 1, or equivalentlyo; <jj + Yjc for
the edge{j,k}. Similarly, the equatiorY;j + Y < o + (oj + ox — 1) implies thatY (ep— &) /(1 — o)
satisfies the edge constraint for edgek}.

Let (i,t) be a pair of vertices such thet, oz ¢ {0,1}. LetS C {1,...,n} be the set, am{]R\(,\,m)}WGS
the witnesses given Hyemma 4.7or i. Theni,t are called alistant pairif t & UyegBall(w, R\(Nm)). (Note
then thato; = 3 +v.) To ensure thate/a; andY (e —&)/(1— ) are(S,R™, y)-vectors witnessed
by {R\(Nm)}wes (as required by conditioB) it suffices to ensure that thénh coordinates o¥e/o; and
Y(eo—a)/(1— o) are% + v for all distant pairgi,t). In particular, for all such pairs,

1
Yit :aiat:ai(§+}/) . (4.15)

Remark 4.8. By Lemma 4.7 distant pairs have the property that every patiGithat connects them
contains at least/% consecutive verticels such thatoy = % + 7. In particular, any such path contains
2/v7—1 consecutive edges whose endpoints are “oversatisfiedly 2y.

Finally, (S§,R™,y)-vectors must lie if0,1]™. The following constraints imply thate/c; and
Y(eo—g)/(1— 05) are in[0, 1]

0<Yj<oi, Vije{l...n}i#] (4.16)
=Yij <1-a —aj, Vi,je{l,....,n} i # ] (4.17)

Constraints 4.13—(4.17) suffice to forceY to satisfy conditionsA and B. We will not directly
analyze these constraints but instead analyze the following four constraint families which imply con-
straints 4.13—(4.17) but are also in a cleaner form:

Yii <B(,]), vi,je{1,....n} (4.18)

=Yij <8(i, ), vi,je{1,....n} (4.19)
'J+Yk<a('v k), v{j.k} €E (4.20)
—Yij —Yie < b(i, . k), v{j,k} €E (4.21)

Here (1)B(i,j) = oi; if i, is a distant pair angd(i, j) = min(ai, oj) otherwise; (2)6(i, j) = —o
if i=1j,o6(,j) = —ao if i, is a distant pair, and (i, j) = 1 — o — a; otherwise; (3)a(i, j,k) =
o + (o + o — 1); and (4)b(i, j,k) = —ai. Note that sincex € [0, 1", B(i, j) + (i, j) > 0.

To prove the consistency of constraints18—(4.21), a special combinatorial version of Farkas’s
lemma will be used similar to that used iB4] and the conference version of this pap8}. [Before
giving the exact combinatorial form we require some definitions.
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Let H = (W,F) be the graph wher&/ = {Yj; :i,j € {1,...,n}} (i.e., there is a vertex for each
variabley; j) and the edgeB consist of all pairsY;j, Y} such that{j,k} € E. Vertices inW labelled
Yi are calleddiagonal Given an edgdY;;,Yi} in H, calli its bracing nodeand{ j,k} € E its bracing
edge An edge{i, j} in G is calledoverloadedf o; = o) = %Jr y. An edge{Y;, Y} in H is overloaded
if its bracing edge is overloaded.

Let p be a walkvg,v1,...,v; onH and letey,..., e be the edges il traversed by this walk. An
alternating sign assignmetitP,N) for p assigns either all the odd or all the even indexed edggstof
the setP with the remaining edges assigned\toGiven an alternating sign assignméRtN) for p, an
endpoint ofp is calledpositive(negative respectively) if it is incident to an edge (N, respectively).
We will be particularly concerned with the positive diagonal endpoints of a walk.

Given a pathp in H with an alternating sign assignmégf N), let

SV = S aljk+ Y bk (4.22)
{¥ij Y }eP {¥ij,Yic}eN

Suppose the endpoints pfare labelled byfij, Yi. Define§fp’N to beD +E whereD is §(i, j) if Yjj
is a positive endpoint and (i, j) otherwise; ande is o (k, /) if Yy is a positive endpoint and $(k, ¢)

otherwise. Le§PPN) — gPPN) QPPN

Lemma 4.9 (Special case of Farkas's Lemma)lhe constraints on the variableg ¥re unsatisfiable iff
there exists a walk p on H and an alternating sign assignriém) for p such that &PN) is negative.

Proof. Note first that by Farkas’s lemma, constraiMsl®—(4.21) are unsatisfiable iff there exists a
positive rational linear combination of them where the LHS is 0 and the RHS is negative.

Now suppose that there exists a pagtiin H and an alternating sign assignméRtN) such that
SPPN) < 0. Consider the following linear integer combination of the constraints: (1) For each edge
{Yij ,Yik} e p, if {Yij,Yi} € P, add the constraing; + Yix < a(i, j,k); if {Yij,Yi} € N, add the constraint

—Yik < b(i, j,k); (2) For each endpoin;j of p, if it is a negative endpoint add the constraint
Yij < B(i, )); ifitis a positive endpoint add the constrain¥i; < 4(i, j). But then, for this combination
of constraints the LHS equals 0 while the RHS eq@#&N) < 0. So by Farkas’s lemma the constraints
are unsatisfiable.

Now assume on the other hand that the constraints are unsatisfiable. So there exists a positive rational
linear combination of the constraints such that the LHS is 0 and the RHS is negative. In fact, by clearing
out denominators, we can assume without loss of generality that this linear combinatiorielgas
coefficients. Hence, g8(i, j)+ (i, j) > 0 for all i, j, our combination must contain, without loss of
generality, constraints of typd.20 and @.21). Moreover, since the LHS is 0, for eath appearing
in the integer combination there must be a corresponding occurreneg;ofBut then, it is easy to see
that the constraints in the integer linear combination can be grouped into a set of pathsH each
with its own alternating sign assignment such that the RHS of the linear combination gﬂ&l@“i)

(for an example, seEigure J. But then, since the RHS is negative, it must be that at least one of the
pathsp in the set is such th&PPN) < 0. The lemma follows. O

So to show that the constraints for the malfiare consistent, we will show th&t”PN) > 0 for any
walk p onH and any alternating sign assignméRtN) for p.
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—Y12 < -0 0
Yio+Yiz<og+ (op+o3—1) Walk py
—Y13— Y34 < —03 Yi2
Yas+Yas < 03+ (a+ 05— 1) v €h Walk p2
13
—Ya5— Y56 < —0t5 eN; Yr7 I .,
V. €
Y56 < 0506 35 cn Yog
Y77 < -0y Yas
Y77+ Ys< o7+ (a7 +0g—1) v €Ny
56

—Y7g<1l—o07—0g

Figure 2: A positive integer linear combination of the constraints where the LHS is 0, and which corre-
sponds to two walkg; andp, in H with alternating sign assignmer(#3;,N;) and(P,, N), respectively.

To that end, fix a wallp onH and an alternating sign assignméRtN) for p. To simplify notation
we drop the superscripp; P,N) from §lp;P’N), %p;P’N) andSPPN) Letvg, v, ...,V be the nodes visited
by pin H (a node may be visited multiple times) andégt. .., e be the edges il traversed byp. We
divide our analysis into three cases depending on whether none, one or both endppiats pbsitive
diagonal. We will show that in any of these caSes 0.

We first note three easy facts abqutised below:

Proposition 4.10. Let C be the subgraph of G induced by the bracing edges;for.ee,. Then,
1. Subgraph C consists of at most two connected components;

2. If p visits a diagonal node, then C is connected; Moreovel, iwdiagonal and y= Yy, then C
contains a path in G from sto t;

3. If p visits at least two diagonal nodes then C contain a cycle.

Proof. We sketch a proof of the first fact; the other two are similar.

Consider the edges,...,e in order. As long as the bracing node in successive edges does not
change, then the bracing edges of these successive edges form @l paf@. If the bracing node
changes, say at edgein p, the bracing edge fog now starts a new path” in G. Moreover the last
vertexw in G visited by p’ is the bracing node fog. The bracing edges of the edges followiagn
p now extendp” in G until an edgee; is encountered with a new bracing node. But then, the bracing
edge fore; must contairw. Hence, the bracing edge fey now extends patlp’ in G. Continuing this
argument we see that each time the bracing node changes we go back and forth from having the bracing
edges contributing to the patpsandp” in G. Fact (1) follows (also sekigure 3. O

THEORY OF COMPUTING, Volume 2 (2006), pp. 19-51 41


http://dx.doi.org/10.4086/toc

S. ARORA, B. BOLLOBAS, L. LOVASZ, |. TOURLAKIS

Bracing node
o Vi for edge . _ .
e 1 Corresponding bracing edgesin G
o Y
e | 1 o 2 1
/ //
o Yiu p p
e3 4 [ ] 3 5
Bracing nodes 7 ® Y5
change at e, 4 ? 4 6
these edges oY,
g \ e 46 5 / 7
Ye
T o7 Continuation of p’ corresponding to es
walk pinH

Figure 3: Awalkpin H and the corresponding pair of walks p” in G formed by the bracing edges in
p. The walksp’, p” could meet, e.g., ip visits a diagonal vertex ihl.

Case 1: No endpoint ofp is positive diagonal

Suppose the endpointg, v, of p are labelled byY,, andY,q, respectively, and consider the following
sumS,: If vg is a negative endpoint, then it contributesa, to S,; otherwise it contributes- o .
Similarly, if v, is negative, then it contributeg.cy to S, and otherwise it contributesacay. Since
a € [0,1]™1 and neither endpoint is positive diagonal, it follows tBat> S,. So to prove thaB> 0 in
this case, it suffices to sho + S, > 0.

To that end, consider the following sum:

(—aia,- — 040) + z ((XiOCj—i-OCiOCk) . (4.23)
{¥ij Y }eP {¥ij Y }eN

By definition of an alternating sign assignment it follows tha@ telescopes and equas. Hence,

S25+S= Y (&l j.k—(ag+aw)+ Y (b, .k +(go+ao) (4.24)

{Yij,Yi}P {Yij,Yi}eN
= z (1-a)(aj+ox—1)+ Z oi(oj+oy—1) . (4.25)
{¥; Vi }eP {¥j Yi}eN

Now the bracing edges for all edgesdirandN are inG. Moreover,« satisfies th&#ERTEX COVERedge
constraints4.1) for G. Hence,x; + ok > 1 for all edges(Y;;,Yi} € PUN. But then, since we always
have 0< ¢; < 1, it follows that all summands (25 are at least 0 and hence> 0 as desired.
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Case 2: One endpoint ofp is positive diagonal

Assume without loss of generality that is the positive endpoint and is labell¥g;, and suppose the
other endpoint; is labelledYs. There are two subcases:

Subcase 1:{s,t} is a distant pair: By Proposition 4.10if C is the subgraph o6 induced by the
bracing edges foey, ..., e,, then there is a patp’ in C (and hence irG) from stot. So sinces,t are
distant,Remark 4.8mplies thatp’ contains at least/ — 1 consecutiveverloaded edges.

We first define some notation to refer to the summands appearidg2d (vhich will also be im-
portant in this subcase: For an edge {Yi,- ,Yik} in our pathp,

| A-o)(aj+o—1), if {Yij,Yk} €P
C(e)_{ oq(ocj+akj—1)l,( if gYi},YﬁeN

As noted in Case 1 (e) > 0 for alle € p.

In Case 1 we showed th&> 0 by first defining a sunS2 such thatS, > S, and then noting that
S1+S, = Jecp{(€). Unfortunately, in the current subcase, sipantains a positive diagonal endpoint,
it is no longer true tha® > S,. Howeuver, it is easy to see th& > S, — (a1 — oclz). In particular,
S> Yecpl(e) — (01— o?) for the current subcase. So sinéée) > 0 always, to show tha®> 0 in
the current subcase, it suffices to show that for “many” eéges, {(e) is “sufficiently large” so that
Yecpl(€) > 01— o?. The existence of these edgesgnwill follow from the existence of the 2y — 1
consecutive overloaded edgesan

Assume without loss of generality thaf2— 1 = 4q for some integeq and letfy,..., f4q be, in
order, the 4 consecutive overloaded edgesan(recall thatp’ is the path fronstot in G and defined by
the bracing edges qf). LetU = {e,...,8,,} be the set of edges imwhose bracing edges correspond
to fy,..., faq (Wheree; corresponds wittfj). Note that the edges ld need not occur consecutively in
p. However, using arguments similar to those usedripposition 4.1@ve can prove the following fact:

Fact 4.11. The edges op’ can be divided into two consecutive walgisandpy (i.e., all edges irp} and
p, are consecutive and all edgesgheither all occur before or after all edgesph) such that ifJ; CU
denotes the edges pfwhose bracing edges form the walk then the order i of the edged); is the
same as the order of the corresponding bracing edggls inhile the order inp of the edgedJ; is the
reverse of the order of the corresponding bracing edges.in

Example 4.12. Supposep = Y11-Y12-Y13-Y16-Yae-Yse. The corresponding walg’ is 5-4-1-2-3-6 and the
division guaranteed by the above Fact pas= 1-2-3-6,p, = 5-4-1.

Let p}, p, be the division ofp’ andU;, U; the corresponding subsetsffor these paths, respec-
tively, guaranteed bffact 4.11for p’. Without loss of generality, assume that the lengtip/pis at least
29. In particular, assume without loss of generality that --- < i>q. (If insteadp), has length greater
than 2j, then we assume without loss of generality thaf1 > --- > isq and the arguments below are
modified accordingly.)

LetB={1,3,5,...,29—1}. Fix somej € B and consider the pag ,e,., of edges fronlJ. Sup-
posee; = {Yap, Yac}, €., = {Yuv, Yuw} Whereu # a. Since the bracing edges for these two edges are
consecutive irp/, all edgese, such thaij < ¢ <ij, 1 have the same bracing node (sqyand moreover,
this bracing node is different from the bracing nodesjror g ,,. So we havex= ¢ = v (Figure 4.
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, Corresponding
: bracing edgesin G
¢ Yau
8; (b,c) .
! v Path p” in G
8j+1 (91,92) e g1—a
o ch2
QJ-+2 (92793) o 0o
Wa.lk p ® chs
inH : _ : :
: ¢ Jd
® Yegy
aHl—l (gd7gd+1) ® gd+l =Uu
® Yuc
aj+1 (C’ W)
* Yuw
Y

Figure 4: A portion of a walkp in H in which the bracing node (in this cagpdoes not change between
edgess, &, ,, together with the patp” of bracing edges i for the portion ofp with bracing node.

LetZ; =y {(e), where the sum is ov&rc {€,€,41,6,12,---,6,., 1,8, } (i.e., over the edges,
ande,,, and all edges between themph

Claim 4.13. Z; > 2y/3.

Sincej € B was arbitrary andB| = g, the claim impliesS; + S, > q(2y/3) > 1/3—y/6. So since
y<1/2 andoy — o2 < ; for oy € [0,1], it follows thatS; + S, > a1 — &, completing the proof that
S> 0in this subcase.

Proof of Claim 4.13 Supposeal =ij,.1 —ij— 1 is odd (the case whetkis even is similar). Moreover,
assume thaﬂqj,aj+1 € P (the case where they are bothNnis similar). Letaa + a, = 1+D. Sinceg,
andg. . are overloaded,

C(a)+¢(a,)=2y(2—a—aa) =2y(1-D) . (4.26)

If D < £, then @.26) is greater than /3, and hence so &;. So assum® > 3.

Note that the bracing edges @f,1,6,2,...,8,,,-1 form a pathp” from a to u of lengthd in G.
Letg,...,0q4.1 be the nodes op” whereg; = a, gq¢+1 = U (Figure 4. Sinceo satisfies the/ERTEX
COVER edge constraintsi(1) for G, 32 1 ag, > (d+1)/2. In fact, we must have thgti] o, >
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(d+1)/2+ D (this just says that since the endpointspdfsum to 1+ D then some edge(s) alom
must be oversatisfied ly). But then,

(d+1)/2 d+1 di1 1 2y
Zj > C(Q-Hkl):ac( Oy —>Z(+Y>D> )
kZl J kzl “ 2 2 3
O

Subcase 2:{s,t} is not a distant pair: Let S be the contribution ofs;to S (i.e., St = 6(s,t) if vy isa
positive endpoint an8s; = B(s,t) if v; is negative). Since the contributiongf; to S; is —a, it follows
thatSZ = %t — 0.

For an edgey = {Yi;,Yi} € p, let

T a(i,j,k), ifeeP
| b(,j,k), ifeeN

Recall thatvg, V1 ...,V, are the nodes visited by the watkand thate; denotes the edge traversed be-
tweenvi_; andv;. Note then tha& = ¥;_; T;. Moreover, recall that we have assumed without loss of
generality thatp = Y11 andv, = Ys. So sincee; € P, the following claim impliesSs+ 51 T > o,

and hence theB > 0 in this subcase.

Claim 4.14. Let1 < q <r and supposeqy.1 = Yij, Vg = Yi (i.e., & = {¥;j,Yi}). Then &+ Yi—qTris

at leastmin(o;, o) if eg € P and is at leasmin(0,1— o — o) if g € N.

Proof. By “backward” induction org. For the base casg= r, assume without loss of generality that
Vg—1 = Ysj, SO thateg = {Ysj, Yat}. If €5 € N, thenT; = —as so thatT; + St = —as+ min(os, ot). Since

o satisfies the edge constraints1), it follows thato; + ox > 1 for the bracing edg¢j,t}. Hence,
T1+ St > min(0,1— o — o). If insteadey € P, thenTy = as+ (aj + o4 — 1) so that

Ti+Si= [O‘s+(aj +o—1]+(1l—0s— )= aj .

The base casg=r follows.
Assume the claim holds fag and consideeyg—1 = {Yjj, Yk} wherevg_> =Yij andvg_1 = Y. If
€-1 € N, thenTq_1 = —a;. Moreover,g; € P and by induction,

r
85t+[2 Ty > min(ai,ock) .
=q

Sincea satisfies the edge constraindsi), it follows thato; + o > 1 for the bracing edggj,k}. Hence,

;
S+ z T >min(0,1— o — ;) .
(=0-1

If insteadey_1 € P, thenTy—1 = & + (o; + o« — 1). Moreover,gg € N and by induction,

]
Sst+/z T, > min(0,1— o — o) .
(=q
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So sincexj + o > 1, it follows that

r
S+ z Te > min(og, @) .
(=0—-1

The claim follows forey_;. O

Case 3: Both endpoints ofp are positive diagonal

Sincep contains two diagonal verticeBroposition 4.10mplies that there is a cycfe in the subgraph of
G induced by the bracing edges corresponding to the edgasSince girtiG) > 4R™, it follows that
C contains a distant pair. But then, as there are two different paths between this pa ARegark 4.8
implies that there are two subpatplsandp, in C eachconsisting of 2y overloaded edges.
Recall that in subcase 1 of Case 2 where there was one positive diagonal vertex, one such subpath
was used to argue th&> 0 in that subcase. In the current case where therenarpositive diagonals
and thetwo subpathg); andp,, the same argument then implies tBat O for the current case also.

5 Discussion

As mentioned earlier, the interesting open problems are to extend our techniques to problems other than
VERTEX COVERand to semidefinite relaxations instead of linear relaxations. We also feel that the lower
bound for thel. S procedure should extend to more thannagunds but the argument seems to need
some property other than high girth.

As mentioned in our related work section, since the appearance of the conference version of this
paper, a few other paper§, [1, 30] have addressed questions introduced here. However, the techniques
in all the above papers do not seem to apply to grapRTEX COVER Furthermore, they also do not
apply to a lift-and-project method of Sherali-Adar@§]that was contemporaneous to lasz-Schrijver.
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