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Abstract: For a fixedk-uniform hypergraptD (k-graph for shortk > 3), we say that a
k-graphH satisfies propert{p (or propertyPp) if it contains no copy (or no induced copy)
of D. Our goal in this paper is to classify tkegraph<D for which there are property-testers
for testing®Pp andP whose query complexity is polynomial iry&. For suchk-graphs we
say that propert§Pp (or propertyPp) is easily testable

For P, we prove that aside from a single 3-gragt}, is easily testablé and only
if D is a singlek-edge. We further show that for lardie one can use more sophisticated
techniques in order to obtain better lower bounds for any large enkwggaph. These
results extend and improve the authors’ previous results about graphs (SODA 2004) and
results by Kohayakawa, Nagle anéd onk-graphs (ICALP 2002).

For Pp, we show that for ank-partitek-graphD, propertyPp is easily testable. This
is established by giving an efficient one-sided-error property-testéifowhich improves
the one obtained by Kohayakawa et al. We further prove a nearly matching lower bound

*Supported in part by a USA-Israeli BSF grant, by the Israel Science Foundation and by the Hermann Minkowski Minerva
Center for Geometry at Tel Aviv University.
TSupported in part by a Charles Clore Foundation Fellowship and by an IBM Ph. D. Fellowship.

ACM Classification: G.2.2, F.2.2

AMS Classification: 05C65, 68R10

Key words and phrases: Property Testing, Hypergraphs, Lower Bounds, Additive Number Theory,
Linear Algebra, Extremal Problems

to publish the work electronically and in hard copy. Use of the work is permitted as
long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, séetp://theoryofcomputing.org/copyright.html.

(© 2005 Noga Alon and Asaf Shapira DOI: 10.4086/toc.2005.v001a009

Authors retain copyright to their work and grant Theory of Computing unlimited ?hts



http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright.html
http://dx.doi.org/10.4086/toc.2005.v001a009

N. ALON AND A. SHAPIRA

on the query complexity of such a property-tester. Finally, we give a sufficient condition
for inferring thatPp is not easily testable. Though our results do not supply a complete
characterization of thie-graphs for whichPp is easily testable, they are a natural extension
of the previous results about graphs (Alon, 2002).

Our proofs combine results and arguments from additive number theory, linear algebra,
and extremal hypergraph theory. We also develop new techniques, which we believe are of
independent interest. The first is a construction of a dense set of integers which does not
contain a subset that satisfies a certain set of linear equations. The second is an algebraic
construction of certain extremal hypergraphs. These techniques have already been applied
in two papers under publication by the authors.

1 Introduction

1.1 Definitions

All the hypergraphs considered here are finite and have no parallel eddeaniformhypergraph (or
k-graph for short)H = (V,E), is a hypergraph in which each edge contains precisdigtinct vertices

of V. As usual, a 2-graph may be referred to simply as a graph?Plbet a property ok-graphs, that

is, a family ofk-graphs closed under isomorphismkAyraphH with n vertices ise-far from satisfying

P if one must add or delete at least® edges in order to turil into ak-graph satisfyingP. An e-
tester or property-testerfor P is a randomized algorithm which, given the quantitgnd the ability to
make queries whether a desired sek gértices spans an edgehh distinguishes with high probability
(say, 2/3) between the case ldfsatisfying® and the case dfl beinge-far from satisfying?. Such

an e-tester is said to havene-sidecerror if whenH satisfiesP it determines that this is the case (with
probability 1). Thee-tester is said to haviwo-sidederror if it may err in both direction, namely if

it has nonzero probability of acceptiggraphs that are-far from satisfying®, as well as nonzero
probability of rejectingk-graphs that satisfiP. The property is calledstrongly-testabléf, for every
fixed € > 0, there exists a one-sideetester forP whose total number of queries is bounded only by a
function ofe that is independent of the size of the ingegraph. This means that the running time of the
algorithm is also bounded by a function@bnly, and is independent of the input size. In this paper we
measure query-complexity by the number of vertices sampled, assuming we always examine all edges
spanned by them. For a fixéegraphD, let Py denote the property of being inducBdfree. Therefore,

H satisfiesPy if and only if it contains no induced sub-hypergraph isomorphiDtd/Ne definePp to

be the property of being (not necessarily inducBdyee. ThereforeH satisfiesPp if and only if it
contains no copy ob.

The general notion of property testing was first formulated by Rubinfeld and Sadarvho were
motivated mainly by its connection to the study of program checking. The study of the notion of testabil-
ity for combinatorial objects, and mainly for labeled graphs, was introduced by Goldreich, Goldwasser
and Ron L3]. See [L1] and [23] for surveys and additional references on the topic.
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1.2 Previous results

In [3] it is shown that every first order graph property without a quantifier alternation of tygehas
e-testers whose query complexity is independent of the size of the input graph. It follows from the main
result of B] that, for every fixed grapiD, the propertyPj is strongly testable. Although the query
complexity is independent af, it has a huge dependency ofel(the fourth function in the Ackermann
Hierarchy, which is a tower of towers of exponents of height polynomial/g).1In [2] it was shown,

using Szemddi's Regularity Lemma, that, for every fixed graph the propertyPp is also strongly
testable. This result was generalized to the case of directed graphs (digragjspinfrst proving a
directed version of the regularity lemma. In the above two cases the query complexity is also huge, a
tower of 2's of height polynomial in fe.

As in many cases, moving from graphs to hypergraphs has many unexpected difficulties. While for
graphs the strong testability 6fp and P} follows quite easily from an appropriate regularity lemma
[3, 27], until very recently there was no strong enough regularity lemma suitable for provinggteatd
Pp are strongly testable for arkygraphD. The only results fok-graphs were obtained by Frankl and
Radl [12], who (implicitly) showed that, for any 3-gradb, propertyPp is strongly testable (see also
[19)) and by Kohayakawa, Nagle an@®& in [17], where it was shown that, for any 3-graphproperty
Pp is strongly testable. Recent works of Gowel§]|[and independently of Nagle,dll, Schacht and
Skokan P2, 20] suggest that a powerful new hypergraph regularity lemma implieshjandPp are
both strongly testable for arkktgraphD, for arbitrary value ok. It should be noted, however, that the
upper bounds that these new techniques may guarantee, for testiifprm hypergraphs, will probably
belong to the" level of the Ackermann Hierarchy.

For somek-graphs, however, there are obviously much more efficient property-testers than the ones
guaranteed by the general results described above. For example, fqriiByis a singlek-edge, then
there is obviously a one-sided-error property-testerfigr= P, whose query complexity i®(1/¢).
We simply sampleéd(1/¢) vertices, and check if they span an edge. A natural question is, therefore,
to decide for whichk-graphsD there is a one-sided-error property-tester gy or P whose query
complexity is bounded by polynomialof 1/&. We introduce the following definition:

Definition 1.1 (Easily Testable). A property? is easily testabléf there is a one-sided-error property-
tester for? whose query complexity is polynomial iry &.

In [1] it is shown that for an undirected grafth propertyPp is easily testable if and only D is
bipartite. One of the main results d][is a precise characterization of all the directed grapher
which Pp is easily testable. Ird] it is shown that for any grapb other than the paths of length 1, 2, 3
(which have 2,3,4 vertices respectively), the cycle of length 4, and their complerftgritsnot easily
testable. A similar result was also proved for directed graphsk Eo2, the only result in the direction
of classifying thek-graphs for whicHPp and P, are easily testable was obtained Y], where it was
shown that for anyk, the complete&k-graph onk + 1 vertices is not easily testable. A natural step is
therefore to classify all thke-graphsD for which Py and®Pp are easily testable.
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1.3 The new results

Our first two results concern testirigy. In what follows we denote b3, the unique 3-graph on
4-vertices that has 2 edges.

Theorem 1.2. For any k> 3 and any k-graph D other than a single k-edge anghPthere exists a
constant c= ¢(D) > 0 such that the query-complexity of any one-sided-egrtester forPj is at least

1 clog(1/e)
&)

As noted above, for arly there is an obvious one-sided-error property-tester for the ca3deiing
a singlek-edge, whose query complexity@1/¢). We therefore get thatheorem 1.2jives a complete
characterization of thk-graphsD for which Py is easily testable, besides the cas®gp.
Our second result states that for lalgeve can significantly improve the lower bounds for testing
b, for almost allk-graphs.

Theorem 1.3. For any k there is a constantk) such that, for any k-graph D on at leagik) vertices,
there is a constant & ¢(D) > 0 such that any one-sided-error property-tester for tesfitighas query

complexity at least
1 c(log1/g)!logkl
(&)

In fact, the lower bounds in the above theorem apply also to $egnaphs on less thantk) vertices,
amongst them all thi-graphs that contaiff¥, which is the complet&-graph onk+ 1 vertices. As a
special case, we thus improve the lower bound for the cag& obtained in 17], which was similar
to the lower bound inrheorem 1.2 Moreover, our technique supplies a slightly inferior lower bound
(namely, with exponentlog[k/2+ 1]] instead of|logk|) for any k-graphD on more thark vertices
(see discussion following the proof @heorem 1.3n Section5.2). Note that the bounds dtheorem 1.3
aresuper-polynomiain the bounds ofheorem 1.2thus for largek we obtain substantially better lower
bounds.

Our next two results concern testifp. We first give an efficient one-sided-error property-tester
for anyk-partitek-graph. Recall that B-graph isk-partite if its vertex set can be partitioned irksets
such that each edge has precisely one vertex in each of the partition classes.

Theorem 1.4. (i) Lett; <... <t putt =t;-...-t, and let D be any k-partite k-graph with partition
classes of sizes,t .., t. Then there is a one-sided-erreftester forPp with query complexity

t*/tk
o <1) .
€

(i) For any k-partite k-graph D on d vertices which contaift§ edges, the query complexity of any
one-sided-errog-tester forPp is
1\ [El/d
o () _
€
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The upper bound in the above theorem improves the one obtainetirpin[which the exponent
wast*. SeeSection7 for more details. Observe that whénis the completk-partitek-graphK; ¢,
the exponent in the upper bound's® while the one in the lower bound %1 /k, which is quite close.
The proof of this theorem appears3ection?.

For the next result we need some definitions.hédmomorphisnirom a k-graphD to a k-graph
K is a mappingy : V(D) — V(K) which maps edges to edges, namely(\V,...,v) € E(D) then
((P(V]_), EREK) (P(Vk)) € E(K)

Definition 1.5. (Core) The core of ak-graphD is the smallest (in terms of edges)b-hypergraph of
D, denotedK, for which there exists a homomorphism fr@rto K. A k-graphD is called a core if it is
the core of itself.

We also need to define a generalization of cycles in graphs;

Definition 1.6. (Hyper-Cycle') A k-graph ond vertices 1....d is called ahyper-cycleif it contains
d—k+2edges,...,e4_ki2 and one can arrange its vertices on a cycle such that everyeeciyatains
the vertices(i (modd),...,i+k—1 (modd)}.

Observe that fok = 2 the above definition boils down to the definition of a cycle. Also, a single
k-edge is not a hyper-cycle, as it contains Xk — k+ 2 = 2 edges. The next theorem gives a sufficient
condition for inferring that for &-graphD, propertyPp is not easily testable.

Theorem 1.7.If the core of a k-graph D contains a hyper-cycle, then there exists a constac(ti2) > 0
such that the query-complexity of any one-sided-egrpester forPp is at least

1 clog(1/¢)
&)

Observe that the core of akypartitek-graph is a single edge, which does not satisfy the definition
of a hyper-cycle. It is important to note that thougheorem 1.7establishes that for a large family
of nonk-partitek-graphsD, property®p is not easily testable, it does not cover all the thepartite
k-graphs, as the core of some of them does not contain a hyper-cycle. Howekes; &iTheorem 1.7
does cover all the non-bipartite graphs, as it is easy to see that the core of any non-bipartite graph must
contain a cycle, namely, one of the shortest odd cycles of the graph. As we have mentioned above, for
k = 2, this is precisely the definition of a hyper-cycle. Hentieeorem 1.4andTheorem 1.7mply that
for k = 2, propertyPp is easily testable if and only D is bipartite, thus extending the result df [
where the characterization for graphs was first obtained. We finally mention that using the main ideas of
the proof ofTheorem 1.7%ne can slightly extend it by showing that it holds even if in the definition of
a hyper-cycle one only requires that the first two verticeg ofould bei (modd),i+1 (modd) (its
other vertices lying if1,2,...,d}).

As the proof with this definition is more involved (mainly due to cumbersome notations), and still
does not cover all the cases of nknupartitek-graphs, we preferred to give the proof of the slightly less
general case, which contains all the important ideas.

1in some papers on hypergraphs this object is callégha cycle
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We have thus far considered only one-sided-error property-testers. A natural question is if there
arek-graphsD, for which Py, (or Pp) is not easily testable, but can still be tested with two-sided error
and query complexity polynomial in/t. We can (partially) rule out this possibility by showing that
the lower bounds ofTheorem 1.2 Theorem 1.3and Theorem 1.7can all be extended to the case of
two-sided-errog-testers.

Theorem 1.8. The lower bounds ofheorem 1.2Theorem 1.2indTheorem 1. hold for two-sided-error
e-testers as well.

1.4 Techniques

Our main results in this papefheorem 1.2 Theorem 1.3and Theorem 1.7 are based on two new
constructions. All the previous results on testihg andPj ([1, 5, 4, 17]) were based on constructions
of sets of integers which do not contain small subsets that satisfy a csingie equation. All these
constructions were based on Behrend'’s construcfipnfla large set of integers containing no 3-term
arithmetic progression. In our case, however, we consider sets of integers that do not contain small
subsets that satisfy a certagetof equations. The key benefit of this consideration is that requiring
the set of integers to satisfy a set of equations, rather than a single one, allows us to construct much
denser sets than the ones used in previous papers. This benefit translates to significantly improved lower
bounds. The proof of this new construction appearSeation2. Some of the techniques we apply in
the proof of this result are motivated by the work of Laba and La&&}; ivhere they reproved a result
of Rankin R1] by constructing large sets of integers withéetierm arithmetic progressions. The ideas
used in our number-theoretic construction have been further applied in another recenfgper [

Our second technical contribution is an algebraic construction of certain extkegnaphs. The
goal of this construction is to resolve the main technical difficulty in the proof of the main results. The
main benefit of this construction is that it allows us to infer certain linear equations between the integers
that are used in the definition of thelsgraphs. In previous papers about testing subgraphs in graphs,
([1, 5, 4]) inferring these linear equations was trivial. This construction can be viewed as an extension of
a construction of Frankl and@l [12] (which is an extension of the well known construction of Ruzsa
and Szemdxdi [25]), but ours is far more complicated to analyze. It is also much more applicable than
the construction of12], which, for example, can only be used to show that the comgdepeaph on
k+ 1 vertices is not easily testable and with a lower bound ashorem 1.2rather than the one in
Theorem 1.30ur new algebraic technique is applied3action3 andSection6. The ideas used in the
algebraic construction of extremialgraphs have been further applied in another recent péper [

1.5 Organization

In Section2 and Section3 we develop the main machinery needed to protieorem 1.2and Theo-

rem 1.3 In Section2 we describe a new number-theoretic constructiorSéntion3 we describe a new
algebraic construction of extremiggraphs. InSection4 we prove two useful lemmas, which use the
constructions oSection2 andSection3 in order to obtain the lower bounds dheorem 1.2and The-

orem 1.3 The results oSection2, Section3 andSection4 are essentially independent, and thus these
sections can be read independently. To further simplify the reading of these sections, each of them starts
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with a short subsection in which we state the important definitions and state the main results proved in
that section.

The proofs ofTheorem 1.2and Theorem 1.3which follow quite easily by combining the main re-
sults ofSection2, Section3 andSection4, are given inSection5. In Section6 we apply our algebraic
technique again, this time to construct extrelkigraphs, which are a central tool in the proofldifeo-
rem 1.7 The proof ofTheorem 1.7also appears i®ection6. In Section7 we proveTheorem 1.4 As
the proof ofTheorem 1.81ses ideas similar to the ones useddn(in addition to the ideas of this paper)
we omit it. Section8 contains some concluding remarks and open problems.

Throughout this paper we assume, whenever this is needed, that the error patamstsiiciently
small, and that the number of verticesf thek-graph considered is sufficiently large compared te.1
In order to simplify the presentation, we omit all floor and ceiling signs whenever these are not crucial,
and make no attempt to optimize the absolute constants. All the logarithms appearing in the paper are in
base 2.

2 Arithmetic Progressions and Linear Equations

2.1 The main results of this section

In this section we give our number-theoretic construction, which will be later usgedtions. We start
with some definitions.

Definition 2.1. ((k,h)-Gadget)Call a set ok — 2 linear equation§ = {ey,...,e_>} with integer coef-
ficients ink unknownsx, ..., X« a (k, h)-gadgetif it satisfies the following properties:

1. Each of the unknowns, ..., Xx appears in at least one of the equations.
2. For 1<t < k-2 equatiorg is of the form
P+ G = (P +a)xe
where 0< p,r < handx;, Xj,x, are distinct.
3. Equationse; ..., e_» are linearly independent.

We say thaty, . .., z satisfy a(k,h)-gadget¢ if they satisfy thek— 2 equations o€. Note that any
gadgett has a trivial solution; = ... = .

Definition 2.2. ((k,h)-Gadget-Free)A set of integer<Z, is called(k, h)-gadget-fredf there are ndk
distinct integerszy, ...,z € Z that satisfy an arbitraryk, h)-gadget.

Our main goal in this section is to prove the following theorem, which will be a key ingredient in
the lower-bounds fofp.

Theorem 2.3. For every h and k there is an integercc(k, h), such that for every n there is(&+ 1, h)-
gadget-free subsetZ [n] = {1,2,...,n} of size at least

n
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As we have explained before, note that for larige¢he above theorem guarantees the existence of
a substantially larger s&t The special case of the above theorem, wiere2, was proved and used
in [9] and M4]. As the details of the proof ofheorem 2.3will reveal, the main idea is to somehow
reduce the construction required to praveeorem 2.30 a construction related to a notion very similar
to arithmetic progressions. The main idea of this reduction will be to show that integers satisfying the
linear equations of a gadget nearly form an arithmetic progression. Our notion of “near” arithmetic
progression is the following:

Definition 2.4. ((k,h)-Progression) A set of k integersz; < z < ... < z is said to form a(k, h)-
progressiorif there are integerd, n, ..., ng with n; < h such that, for X i <k, we have

z=z1+nd . (2.2)

In what follows we call the integerns the coefficientof the progression and the difference Note
that a(k, h)-progression is “nearly” an arithmetic progressions in the sense that in an arithmetic pro-
gression one requires = ... = ng = 1. Also, note that the differenakis analogous to the difference
between consecutive elements in an arithmetic progression. In other wartkya arithmetic progres-
sion is a(k, 1)-progression of distinct elements. The following notion will be important for the proof of
Theorem 2.3

Definition 2.5. (Nontrivial (k,h)-Progression)A (k,h)-progression is said to beontrivial if its ele-
ments are distinct. Thus, (& h)-progression is nontrivial iff the differenakas well as the coefficients
n; are all nonzero.

The proof of Theorem 2.3appears in the following two subsections. In the first subsection we
show how to transform the problem from one that deals with linear equations and gadgets to an
analogous problem abouk, h)-progressions. We also show how the solution of the problem about
(k,h)-progressions implie$heorem 2.3 In the second subsection we solve the problem afigti)-
progressions.

2.2 Gadgets andk, h)-Progressions

We start this subsection by “reducing” gadgetgkao)-progressions. Formally, we want to show the
following

Lemma 2.6. For every k and h there is an integerec(k, h) such that if z < ... < z satisfy a(k, h)-
gadget then they form a nontriviék, c)-progression.

For the proof of the above proposition we need the following three claims. For the proof of the first
we need the following well-known result that follows from Cramer’s rule and the Hadamard Inequality

(see, e.g.,16]).

Lemma 2.7. LetW be a set of p homaogenous linear equations in g variables.<fgpand each of the
coefficients in these equations has absolute value at most ritirers anonzerosolution{ay, ..., aq},
where eachy; is anintegerwith absolute value at mo§t?p)P/2,
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Claim 2.8. If z; < ... < z are positive integers, which satisfy(l h)-gadgeté, then for2 <i <k-1
there are positive integers 4 < (W?k)¥/2 such that g _1+ bz, 1 = (a +b)z.

Proof. As there is nothing to prove fdt= 3, we assumé > 4. In order to simplify the notation, we
show that there are positive integard < (h?k)¥/2 such that

az +bz = (a+ b)Zz . (2.3)

The otherk — 3 cases are identical. We first substitate. . .,z into the setf, and obtairk — 2 linear
equations of the fornpz + tzj = (pt + t)z. Henceforth, when we refer to equatienc & we will

refer to the equation after we have substituted the integyart it. Our goal is simply to show that there
areay,. .., 0_» not all equal to zero, such that in the linear combina€@oa aie; + ... + ax_»&_» the
coefficients of the integeia, . ..,z vanish. We first claim that this will give u2 (3. Indeed, note that
ase,...,&_» are by assumption linearly independent, it cannot be the case that all the coefficients of the
integersz vanish. Also, as for each of the equation€ithe sum of the coefficients on the left hand side

is equal to the coefficient on the right hand side, this must also hold,fbence, it cannot be the case
that precisely one of coefficients of, z»,z3 does not vanish. Similarly, if precisely two of coefficients

of z1,2,,23 do not vanish, this would imply that they are equal, which contradicts our assumption that
7z < ... < %. Finally as we assume that each of the integeeppears at least once, we are guaranteed
to get @.3.

In order to make sure that in a linear combination with coefficieats. ., ax_» the integergy, ..., z
vanish, we may writk — 3 homogenous linear equations, which require that. This is a det-&
homogenous equations - 2 unknowns with coefficients bounded by Therefore, byLemma 2.7t
has a nonzero solution with integer coefficients of size at rfiwgk — 2))¥/2-1. This means that the
coefficients ofC are bounded byk — 3)(h?(k— 2))¥/2-1 < (h?k)*/2, as needed. O

Claim 2.9. Suppose z2,,73,a,b are positive integers, such that z z < z3 and ab < h. If the
following equation holds

az+bz=(a+b)z ,

then 7,2, z; form a nontrivial(3, h)-progression.

Proof. We show that;, z,, zz form a(3, h)-progression. It will be a nontrivigB, h)-progression because
we assume tha < z, < z3. We first assume thaandb are co-prime, as otherwise we can divide them
by their gcd, and obtain a new equatiaiz; + b'z; = (& +b')z, with @ < a,b’ < b. Rearranging the
equation we get that(z, — z1) = b(zs — ). Asa andb are co-primed = (z3—2)/a=(z2—2z)/bis

an integer. Thus, we can wrigg = z; + bd andzz = z + ad, and taken, = b < handnz =a < hin the
definition of the(3, h)-progression. O

Claim 2.10. Supposez< z < ... < Z are positive integers, such that for evéx'yx i < k— 1there are
integers @ bj < h, such that

&z-1+biz11=(a+b)z

holds. Thengz, ...,z form a (nontrivial) (k,h~2)-progression.
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Proof. As before, we show that, .. .,z form a(k,h%~2)-progression. It will be a nontrivigk, h<-2)-
progression because we assume that z < ... < z. We proceed by induction dn The base case
k = 3 follows fromClaim 2.9 Assuming the claim holds fdt we prove it fork+ 1. By the induction
hypothesis, for Z i < k we can writez = z_1 + mit for some integet andmy < h*2. By assumption
aZ—1+ bkzcr1 = (ak + bx)z. Rearranging this gives

Zo1— %= %k(zk —Zc1) - (2.4)

Putg = gcd(by,t) (< h) andd =t /g, and observe that for £ i < k we can writez =z _1+9g-m -d,
and thus take; = m -g < hh-2 = h*"1, As in Claim 2.9 we may assume tha andby are co-prime,
and conclude from2.4) thatby dividesz — z._1 = mt. We may thus write

axmgt amg

Tt = Hb o = 4k S d =+ Ned
by by

As ag/bx < ax < handmy < h¥=2, we haveny, 1 < h*, and the proof is complete. O

Proof ofLemma 2.6 Immediate fronClaim 2.8andClaim 2.10 O

Though we do not need this here, it is worth mentioning that the convetsenoha 2.6s also true.
Indeed, ifz,. ..,z form a(k, h)-progression, then for everyi < k—1 we havez = z_; + nid, and
Zy1 =z +niy1d. This implies thatn +ni11)z = Nit1Z_1+Nniz41. Hencez,. ..,z satisfy thek — 2
linear equation$n; +ni;1)X = Ni+1X -1+ NiX+1 that are easily checked to satisfy the three requirements
of a (k,h)-gadget.

The proof ofTheorem 2.3will follow by combining Lemma 2.6and the following lemma.

Lemma 2.11. For every h and p> 2, there is an integer e= ¢(p,h) such that for every n there is a
subset ZC [n| = {1,2,...,n} of size at least

n
2| =

that does not contain any nontrivigl +2P~1, h)-progression.

Proof of Theorem 2.3 Let p be the largest integer satisfyingt12P~1 < 1+k, namely,p = |log 2k].
Letc = c(k+ 1,h) be the constant appearingliemma 2.6 Now, byLemma 2.11there is a constant
c=c(p,c), such that for everm there is a subsét C [n] of size as in2.5), which contains no nontrivial
(1+ 2P~ ¢)-progression. By our choice g, this set contains no nontrivigk + 1,¢')-progression.
By Lemma 2.6 the setZ does not contaikt + 1 distinct integers, which satisfy &+ 1,h)-gadget. As
p = |log |, the se satisfies the requirements Biheorem 2.3 O

It is easy to see that the elements ofla- 2P~ h)-progression must be taken from an arithmetic
progression of length at mob2P~1, whose difference is the integdrfrom the definition of theg1+
2P~1 h)-progression iDefinition 2.4 Thus, another way to look aemma 2.11s as a construction of a
setZ with the following property: not only doesrit contain arithmetic progressions of length 2P,
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but it does not even contain12P-1 numbers out of some other not too large arithmetic progression,
whose other elements need not even belorig) to

In order to proveLemma 2.11 we will first show that it holds for everfixed set of coefficients
No,...,Ny o-1. Namely, we show that there is a subsefrifof the same size as i2 () that does not
contain any(1+ 2P~ h)-progressiorz, ...,z »»1 such thag = z_1 +nid for every 2<i < 1+2°P-1,
Note that the differencd may be arbitrary. To be precise, we want to show the following:

Lemma 2.12. For every fixed positiveay...,ny -1 < h there is an integer e= ¢(p,h) such that for
every n there is a subsetZ [n] = {1,2,...,n} of size at least

Z] > —

that does not contain any nontriviél + 2p-1 h)-progression with coefficientsn.. nyp_1.

The proof of this lemma appears in the next subsection. We first show how to derivea 2.11
from the above lemma.

Proof ofLemma 2.11 For every sets, of positive »-1 integersny,...,Nny -1 < h, let Zs be the
largest subset dh], which does not contain any nontriviél + 2P~ h)-progression with coefficients

M,...,Ny 1. By Lemma 2.12wve have that for ang the setZs has size at Ieast/e°'°91/p”, wherec
depends only op andh. Denote the number of setdy m, and observe that as the coefficients in each
setsare bounded b there are less tharP®choices for the set

Uniformly at random pickmintegerds,...,tn from {—n,...,n}, and consider the set

m
Z=\(Z+t)

i=1
(where,Z +t denotes the translate @fbyt, i.e. Z+t = {z+t:zc Z}). ClearlyZ contains no1+
2P-1 h)-progressions with arbitrary coefficients boundedhbyror every integez € [n] the probability
that it belongs taz; +t; is 1/e°'°91/p”, hence the probability that it belongs to all the s&ts-tj, and
therefore also t&, is (l/ec"’gl/p”)m = 1/e‘5'°91/pn for a possibly larger’ that still depends only op
andh. By linearity of expectation we get that the expected sizé isfn/ed log"/ ’n and therefore there is

some choice off, ...ty for which the resulting sef is at least this large. O
2.3 Large sets of integers without a giverik, h)-Progression

In this subsection we apply the method @8] in order to proveLemma 2.12 The proof will require
some more definitions. We first need to further extend the notion of arithmetic progressions as follows:

Definition 2.13 ((p,t,h)-Progression). A set of p integersz,...,z, 1 is said to form a(p,t,h)-
progressionif there aret + 1 integersdy,...,d and integeray = 0,ny,...,Nnp_1 < h such that for
0<i<p-1

z=do+ni-dh+n?-dp+...4+n'-0 . (2.7)
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To avoid confusion, note that by definitioly = zy, thus, we did not really needh andng, which is
fixed to be zero, in the above definition. However, this way of defining the integers of the set will make
subsequent notation more compact. Note that unlike the definitiqik, bj-progressions irDefini-
tion 2.4 here we define each element of the sequence with respect to the smallest mmbgrrather
than the preceding one asrefinition 2.4 Therefore, gp, h)-progression as defined Definition 2.4
is also a(p,1,h(p—1))-progression as defined i.{).

Definition 2.14 (Nontrivial (p,t,h)-progression). We call a(p,t,h)-progressiomontrivial if at least
one ofdy,...,d is nonzero andh, ...,np_1 are distinct.

Definition 2.15 Rs(p,t,n)). For a sesof pdistinct integersip =0,n;...,np_1 < h, defineRs(p,t,n) to
be the largest possible size of a subsenpfvhich does not contain any nontrivig,t, h)-progression
whose coefficients are the integerssof

The proof ofLemma 2.12will follow by combining the following two claims.

Claim 2.16. For every set s, d?t + 1 distinct integers bounded by h, there is an integer c{t, h), such
that

n
Rs(2t +1,t,n) > ooan

(2.8)

Claim 2.17. For every set s, of p distinct integers bounded by h, there is an integexp, h), such that
ifn=g®and p>t+1, then
n-Rs(p, 2t,g%b)

RS( p?t7 n) 2 Cbgzb

(2.9)

Proof ofLemma 2.12 As we have noted above (@, h)-progression as defined efinition 2.4is also
a(p,1,h(p—1))-progression as defined i@.7). Hence, we can proveemma 2.1y showing that for
every ses, of distinc? coefficientsng = 0,n, ..., Ny-1 < h2P~1 we have

n

p-1 >
Rs(1+2P7%,1n) > plogPn

(2.10)

Consider any ses, of distinct integers bounded Hy¥2P~1. Given integers1 and p, we prove by
induction on/ that for every 2< ¢ < p there is a constamt= c(p, h), such that

) n
Rs(142P~1, 2P~ n) >

The case = 2 follows fromClaim 2.16with t = 2P~2, Assuming the claim holds farwe prove it

for £+1. Setb = (logn)¥ (1) and letg satisfyn = g°, namelyg = e09"* ' " A short calculation
shows that in this case

(logg®b)™* < c(logn)¥/+1) (2.12)

2The reader should recall that for p,t, h)-progressions to be nontrivial its coefficients should be distinct. Whef this
guarantees that this nontrivigp, 1, h)-progression is also a nontrivigp, h)-progression.
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wherec depends only op. We get that

n-R(142P~1, 2P~ g?b)
cPg?b
n g’b - n n
= Cbgzb. ec(|ogg2b)1/é = Cbec(|ogn)1/(k+1) = ep(|ogn)1/(/+1)

R(1+2° 1 2P "1 ) >

Y

where the first inequality follows fror€laim 2.17 the second from the induction hypothesis 2m1()

with n = g2b, the third from @.12), and the last from our choice dfand the fact that depends only

on p andh. Also, note that by the reasoning we used to derive each of these inequalities, all the above
constants depend only gmandh (we called all of thenc in order to simplify the notation). This
completes the proof o2(11). We now obtain2.10 by settingl¢ = pin (2.11). O

We now turn to proveClaim 2.16andClaim 2.17 which will require (yet again) several additional
definitions. Given a set of integeBwe denote bys5+r thetranslateof Sbyr, that is,S+r = {x+r:
x € S}. Note, that ifSdoes not contain any nontriviép,t, h)-progression than so does any translate of
S. For reasons that will soon become clear, we prefer to p@aam 2.16andClaim 2.17with respect
to the set of integer§—n/2,...,n/2} rather tharin] = {1,...,n}. We also consider representations of
integers from{—n/2,...,n/2} in baseg, whereg will depend om and will be much smaller tham If
n= gb we define, for an integar> 2,

b-1
Qe={x€Z:x= in-g',—g/CSXi <g/c} .

namely, all the integers whose “digits” in bagédelong to—g/c,...,g/c. AsQ. C {—n/2,...,n/2}
we may and will construct our sought after sets from integers belongiQg for an appropriate large
enough constant. Note, that somewhat unconventionally, we allow for negative digits. This repre-
sentation, however, is well-defined in the sense that giverQ., there are unique integersg/c <

X0, - - -, Xp—1 < g/Cc such thak = Zib:‘olxi .g'. Given an integex € Q. we will denote byx = (X0, -+, Xp-1)
the uniqueb dimensional vector irZ® such thatx = 2" 1% -g'. We will also denoté|x||? = ||X||? =
zibz‘olxiz. Our argument will critically rely on the observation thatcifs sufficiently large then addi-
tion, and more generally linear combinations with small coefficients, of numbers@ramequivalent
to linear combinations of their corresponding vectors. For example, observe thgtziE Q,, then
x+y=zif and only if Xx+y =2z The reason for that is simply that there is no carry in the lmase
addition of the number. More generallydis sufficiently large with respect to integems, .. ., a;, then
for x,x1,...,% € Qg,

t t
X=Y0-X<==X=Y 0% . (2.13)
2" 2"

Also, note that ifc is sufficiently large with respect to integeaxs, . .., o, then forxy, ..., % € Qc,
t
X = Zlai X €Qy (2.14)
i=
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for another (possibly smaller) constant It should be noted that had we chosen to work with therget
rather than—n/2,...,n/2 and represented integers using positive digits, t@et3(and .14 would

not necessarily hold for negative coefficients. The reason is that the difference of two numbers with
small digits may contain very large digits. As we also allow for negative digits, the difference also
contains small digits. Finally, given integeps,..., p we denote by (ps,...,pt) the Vandermonde
matrix satisfying for 1<i,j <t,Vij = p/.

Proof of Claim 2.16 Consider any setof 2t + 1 distinct integersig = 0,ny, ..., Ny < h. For an integer

r define§ = {x€ Q. : ||| =r}. We claim that ifc is large enough in terms ofndh, thenS contains
no nontrivial (2t + 1,t, h)-progression with coefficients taken frenSuppose to the contrary that there
are such 2+ 1 integersy, zy, . .., zx. By (2.7) we have that for i < 2t

z=do+nm-di+n?-do+...4+n -0 , (2.15)

wheredg = 7,ds,...,d; are arbitrary integers. Recall, that for this set to be nontrivial at least one
of di,...,di must be nonzero (the integanse s are already assumed to be distinct). Denot®lhe
determinant of the Vandermonde mawix=V (no,...,n;), and for 0<i <t denote byD; the determinant

of the matrix obtained fronv by replacing thé'" column with the column vectdiz, . ..,z). Observe,
that we can view the first+ 1 equations in4.15 ast + 1 equations in unknowndy,ds,...,d;. It
follows from Cramer’s rule that for & i <t we haveDd; = D;. From the definition of the determinant
we can viewD; as a linear combination @, ...,z with integer coefficients bounded by a constant that
depends only ohandng,ns,...,n.. Asng,ny,...,n < h, these coefficients are bounded by a constant
that depends only onandh. Hence, by 2.13), if c was chosen large enough in terms @indh then

for 0 <i <t, we get thatDd; (the b dimensional vector representifidy) is a linear combination of
%, ...,%. Moreover, by 2.14) we may conclude thdd;, € Qv for somec’ < c. As by 2.19), z, ..., Zx

are defined as linear combinationsdpf. . ., d;, we conclude that i€ is large enough (so thatis large
enough), we can us@.(3 again to write .15 as

DZ = Ddo+n;-Dd; +n?-Ddp +...+n - Dd . (2.16)
Define the following polynomial of degree 2

b—-1
P(X) := Z)((Ddo)(ﬁ—(Ddl)q-x—|—(Dd2)q-x2+...—|—(Ddt)q-Xt)2 :
g=

where(Dd;)q denotes thef" entry of the vectoDd;. The key observation now is that bg.16) we have
for 0 < j < 2t thatP(n;) = ||Dz|?> = D?||zj||>. Hence, as by assumption all the integerbelong to
S, we have thaP is a polynomial of degreet2wvith 2t + 1 distinct values (namelgig, n1,. .., ny) for
which it is equal toD?r. ThereforeP must be identical t®?r, which can be easily seen to imply that
(DTji)q =0forall0<g<d-—1and1<i<t. Henced; =... =d; =0, contradicting our assumption
that this is a nontrivia(2t + 1,t, h)-progression. We conclude thatifs large enough in terms éfand
t thenS contains no nontrivia(2t + 1,t, h)-progression.

The claim now follows by averaging. As the absolute value of each dig}.iis bounded by/c,
we haver < b(g/c)? < bg?. Similarly, we conclude tha®. is of size(2g/c)® > (g/c)P. As the union of
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the setsS covers the entire s&, there must be onefor which |S| > (g/c)P/bg? = n/bg?c®. Setting
b = \/logn, and hencg = ev'°9", gives @.8) for an appropriate constaat= c(t, h). O

Proof ofClaim 2.17 We again consider an arbitrary seof distinct integersip =0, ny, ..., np_1 bounded
by h. As in the previous proof, we continue to write= g° and represent numbers in bapsith possibly
negative digits. We will also construct our sought after set f@yfor a large enough constanithat will
only depend ormp,t andh. Let D denote the determinant of the Vandermonde matrix V (no, ..., ).
LetRC {1,...,D?b(g/c)?} be a set of siz&s(p, 2t,D?b(g/c)?) that contains no nontrivialp, 2t, h)-
progression with coefficients fros) and recall that any translate Bfalso satisfies this property. Let
L ={-D?b(g/c)?,...,D?b(g/c)?}. For any/ < L define

Ar={xeQ.:|Dx|?cR+/(} .

We claim thatA, does not contain any nontriviap,t, h)-progression, with coefficients fros) provided

c in the definition ofQ. is large enough. Suppose this is not the case, anzplet ,z,_1 be such a
nontrivial (p,t,h)-progression. Namely, suppose there dygls, ..., d; not all equal to zero such that
zj=do+5!_, ntjdt holds for 0<i < p—1. As by assumptiop >t + 1 we can still write theé + 1 linear
equations as in;15. We can then argue as in the proof@#im 2.16that providedc is large enough,
we may conclude that for € j < p— 1 one can write

DZ = Ddy +n-Dd; +n?-Ddp + ... 4+ nt - Ddy . (2.17)
This implies, as irClaim 2.16 that for every (< j < p— 1 we can write

2
b-1/ t _
IDz;|| = D72 = ZO(%(Ddi)q'n'j) —dy+nj-dp 02 dpt ... 4%y (2.18)
¢=0 \i=

wheredj,...,d5 areidenticalto all 0< j < p—1. Itis easy to see that @, ..., d; are by assumption
not all zero, then so ard),...,d,. Asdj,...,d5 are common to al||Dz||?, the right hand side of
(2.18 has the structure of a nontriviap, 2t, h)-progression with coefficients frosm This means that
|Dzol[?,...,||Dz_1||? form a nontrivial(p, 2t, h)-progression with coefficients from This contradicts
our choice olRandA,.

We conclude that for anf/c L, the se#\, contains no nontrivialp,t, h)-progression with coefficients
from s. It is thus enough to show that for somiec L the setA, is large enough. We do this again
by averaging. As the absolute value of the digits of numbers f@anis bounded byg/c we have
0 < ||Dx||?> < D?b(g/c)? for any x € Q.. Therefore, for any € R andx € Q. there is ar¥ € L such
that||Dx||?> = r + £. Hence, for any € Q. there argR| integerst € L such thai € A,. In other words,

LlilAg > |R||Q|, and therefore for some choice6f L we havelA,| > |R||Q¢|/|L|. As|Q¢| > (2g/c)®,
the proof follows as for somée L we must have

R(p72t7h7D2bg2) i (Zg/c)b > R(p72t7h7 ng) 'gb > R(p72tah7bgz)

> 2.1
Aol 2 D2b(g/c)? - D2cPbg? =N cPbg? ’ (2.19)
where we used the fact that by definitios- g° andD is bounded by a function afandh only, therefore,
we can use a slightly larger constartb “absorb”D?. O
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3 Linear Equations and Extremal Hypergraphs

3.1 The main results of this section

In this section we describe the first algebraic construction of extrérgaaphs, which will play an
important role in the proofs ofheorem 1.ZandTheorem 1.3&about testingP, in SectionS. The second
construction, related t¥p andTheorem 1.7appears irbection6. The following definition will be key
for what follows:

Definition 3.1 (7). Let 7K denote the family ok-graphs ork+ 1 vertices, which contaiat leastthree
edges.

Letmbe an integefT a member offk, andZ an arbitrary subset dfn. Let alsoPy = {py,..., Pks1}
be a set ok + 1 distinct integers bounded by (thusd > k). Consider the following definition of
ak-graphS= §m,Z, T,Py): The vertex set o5 consists ofk + 1 pairwise disjoint sets of vertices
Vi,...,Vki1, where, with a slight abuse of notation, we think of each of these sets as being the set of
integers 1...,dm. Define

E(20,21,....%1,P) =20+ P-a+p* 2+ P zz+...+ Pz q . (3.1)

We define the edge set &by specifying the edge sets (#|¥ copies ofT that we put inS. In what
follows we refer to thek+ 1 vertices of T as integers in{1,...,k+ 1}. For every set of (not nec-
essarily distinct) integerg,...,z_1 € Z, we add toS a copy of T that is spanned by the vertices
vi €Vi, ... Vi1 € Vi1, Where for 1< i < k+1 we choose; = E(z,...,z_1,pi). In order to specify
the edges of this copy, we simply regard the vertiges. ., vy 1 as if they were the vertices 1. k+1

of a regular copy off and put in the corresponding edges. Namely, for every €dge. ,tx) € E(T),
we add toSan edge that contains the vertices

E(ZO7"'72k—17pt1)E\/tla E(ZO,...,Zk_]_,p[Z)E\/tZ, 7E(ZO7"'7Z|(—lap[k)6\/tk .

In what follows we denote b@(z, .. .,z_1), the copy ofT defined using the integezs, ...,z 1. Note,
that each of thesgZ|¥ copies ofD has precisely one vertex in each of the 34ts..,Vi.1. Note also,
that for everyzy, ...,z 1 andp;, the functionkE satisfies

1<E(2,...,%1.p) <kd'm<dm

thus the vertices “fit” into the sel4, ..., Vk,1. The reader should also observe that we treat the set of
integersPy, as anorderedset, as when choosing the vertex frdfrwe use the integes; € Py. Our first
goal in this section is to prove the following lemma.

Lemma 3.2. (The Key Lemma) Let T be a member Gf¥, m an arbitrary integer, Z a subset @f
and R a set of ki 1 distinct integers bounded by d. Define=S5(m,Z, T,Py), and suppose £E,, E3
are three edges that belong to a copy of T in S. {feEC(ay,...,a-1), E2 € C(bo,...,bk-1) and
Es € C(Cop,...,Ck-1), and if g < ¢; < b; for some i,0 <i < k— 1, then either a= b; = ¢; or there are
positive integergy, B, < d3” such that

Biai + B2bi = (BL+B2)Ci -
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Using the above lemma, we will construct the following extreikaraph, which will be a key
ingredient in the lower bounds dheorem 1.z2andTheorem 1.3

Lemma 3.3. For every fixed k-graph D on d vertices that contains a copy efT* with r > 3 edges,
an integer m and 4r, d3d2)-gadget-free set Z [m/d“*?], there is a k-graph F on m vertices with the
following properties:

1. F contains|Z|* induced copies of D, which are singled out from the rest of the copies of D and are
called theessential copiesf D in F.

2. Each pair of these essential copies share at mestLicommon vertices.
3. Every copy of T belongs to one of the essential copies of D.

It is important to note that we do not claim tHatdoes not contain any copies Dfother than the
|Z|* essential copies, nor will we claim so later on in this section. As the statement of the above lemma
is rather technical, the reader can findSection3.3a short intuitive explanation of it.

3.2 Proof ofLemma 3.2

The main idea of the proof is very simple; @&shas onlyk+ 1 vertices, the 3 edges spanned by these
vertices must have many common vertices. As the vertices of each set were chosen using the function
E defined in 8.1), we get from each vertex that is common to, dayandE,, a linear equation that
relates the integem, . .., ax_1, which were used to defirte; and the integerby, ..., bx_1, which were
used to defind,. We then show that for eveiyeithera; = b; = ¢; or the linear equations induced by
the intersections of the edges are “reach” enough to enable us to extract a linear equation of the form
Biai + Bobi = (Bi+ B2)Gi.

Let E;, E; andEjz be three edges that belong to a copy of a memb&rof®. AsT hask+ 1 vertices
and anyk-graph ork+ 1 vertices that contains at least 3 edges is a core (rBedithition 1.9, thek+ 1
vertices must belong to distinct sats Call these vertices; € V1,..., Vi1 € Vkr1. Assume, without
loss of generality, thef; = {v1,...,Viks1} \ Vi1, E2 = {Va,.. ., Vir1} \ Wk andEz = {va,...,Viky 1} \ Vk—1.
Recall, that every edge i belongs to one of the copies ®f defined using somk integers fromZ.
SupposeE; € C(ay,...,a-1), E2 € C(by,...,b_1), andEz € C(cp,...,Ck-1). ASV1 € V4,..., V1 €
V-1, are common to botk; andE,; we conclude that for everye [k+ 1]\ {k,k+ 1}, the following
equation holds:

E(ao,...,a-1,p) =Vi = E(bo,...,bk_1,pi) -

As vy € Vq,..., V2 € Vk_2,W € V, are common to botlie; and Es we conclude that for everye
[k+1]\ {k—1,k+ 1}, the following equation holds:

E(ao,...,ak-1,pi) = Vi = E(Co,...,Ck-1, Bi) -

We could have writtetk — 1 equations for the common verticesEf andEz, however, all but one of
them follow from the previous equations. The only independent equation is due;to

E(bo,...,bk_1, Pk+1) = Vb1 = E(Co, ..., Ck—1, Prs1) -
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We get a set of — 1 equations in B unknowns,ag,...,ax_1, bo,...,bk_1 andcy,...,ck_1. In order
to simplify the rest of this subsection, we substitute the definitio ffom (3.1) and write our set of
eqguations as follows:

ag+ pra1+ praz+ ...+ plflak—l =bo+ pib1+ pibo+ ... + p'i_lbk—l
ag+ poa1+ paz+ ...+ plé_lak—l = bo+ pob1+ pabo+ ... + pé‘lbk_l

80+ Pr_181+ Pe_182+ ... + PR a1 = Do+ peotbr+ PE_gbo + ...+ Pt s
a0+ pras+ Pag+ ...+ pita 1 = co+ pici+ Pica+ ...+ P e g
a0+ p2as+ paag+ ...+ p§ a1 = Co+ Paci+ pAca+ ...+ P Yok 1

8o+ Pk—2a1 + pﬁfzaz +...+ p:z:%ak—l = Co+ Pk—2C1 + pﬁ,zcz +...+ pE:%Ckfl
a0+ Pray + peaz + ...+ P tak 1 = Co+ pkC1+ PEC2 + ..+ P te 1
bo+ Prs1b1+ PZgbo + ...+ P Ibk-1 = Co+ PipaCr+ PEaCot -+ PR oK1

In what follows we denote byp the above set of equations. The main idea of the proof will be to
show that eitheag = bg = ¢y or there is a linear combination @fwith integer coefficients, ..., o1,
which results in the required linear equation relatigdoy andcy. The other cases relatirag, b, ¢; with
i > 0 are completely identical. The main idea is to find a linear combination in whichfor £ k— 1
the coefficients o, bj andc; vanish. To this end, we introduce a set of equations whose solution will be
our desired integers;. Observing®, we see that each appears on the left hand side of the firkt-22
equations. Thus, in order for the coefficientpto vanish in a linear combination d@f with coefficients
o, ..., 0k 1, the following equation must hold

A OCl'Pi1+062-pi2+--‘+062k73-Pik,erOtzkfz-pL:O.

Eachb; appears only on the right hand side of the fikst 1 equations and on the left hand side of the
last equation. Therefore, in order for the coefficienbaio vanish the following equation must hold

Bi: 1'pi1+062-pi2+...+06k_1'pikflfazk—l'pi@l:o-

Finally, eachc; appears only on the right hand side of the lastl equations. Hence, in order for the
coefficient ofc; to vanish the following equation must hold

G k'pi1+06k+1'pi2+---+062k—3'pik72+062k—2'DL+062k—1'Pik+1=0 .

Observe, that we can write the analogous linear equatdgridy andCy that will require the co-
efficients ofag,bg andcy to vanish. Though we apparently don't need these equations, they will be
useful for the proof. In what follows we denote bythe set of equation8y,...,Ax_1, B1,...,Bx_1,
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andC,,...,C«_1. The setY consists of 8 — 3 homogenous linear equations ik 2 1 unknowns
a1, ..., 0k 1. Observe, however, that fordi <k-1,

A =Bi+GC .

ThereforeY'is equivalent to a set ofi3- 3— (k— 1) = 2k— 2 linear homogenous equations ik-21 un-
knowns, which consists of equatioBsC; . Observe also, that each of the coefficient¥imas absolute
value at mostlX (recall that 1< p, ..., pr1 < d). By Lemma 2.7we are thus guaranteed that there are
integersos, . .., o1 not all equal to zero, whose absolute values are at (aB§t2k — 2))k-1 < d2,
such that in a linear combination of the above equations the coefficients of all the varialdgbLdy
vanish. We now claim that in such a combination either the coefficieng of the coefficient o€y does
not vanish. An important observation is that as the integers ., px.1 are distinct, the linear equa-
tionsBy, ..., Bk_1 that require the coefficients b, ... ,bx_; to vanish are linearly independent. Hence,
their only solution isoy =0, ..., 0x_1 = 0, apk_1 = 0. Similarly, thek linear equation€y, . ..,Cx_1 that
require the coefficients af, ...,cy, to vanish are linearly independent. Hence, their only solution is
ax=0,..., 001 = 0. Thus, if the coefficients dfy andcy vanish we may conclude that we must have
used a linear combination witlty = ... = opk_1 = 0, which contradicts our choice.

Note, that as in each of the equationsibthe sum of the coefficients on the right hand side is equal
to the sum of the coefficients on the left hand side, this property must also hold in a linear combination
of ®. Hence, there is no linear combination in which the coefficient of precisely oag lof, c; does
not vanish. It also follows that if the coefficients of precisely twagftg, co do not vanish, then they
must be equal. However, if for exampag = bg, then we can “replacely, with ag in the last equation
of @, and use the lastequations ofp to infer that for 1< i < k— 1 we haveg; = ¢;. We would thus get
thatag = by = ¢p, Which satisfies the requirement of the lemma. The other two cases are similar. As in
the previous paragraph we have ruled out the possibility that the coefficiemyggfandcy vanish, the
remaining possibility is that the coefficierds, by andcy do not vanish. In this case, we can use again
the fact that in the resultant equation the sums of the coefficients in each side are equal to infer that we
must get the required equation. Finally, as the coefficiengse bounded byIZdz, the coefficients in the
linear combination are bounded b8k — 1)d2%* < d3¢°,

3.3 Intuition for Lemma 3.3

We give some explanation as to why, or more precisdghgn Lemma 3.3is not trivial. Consider for
simplicity the case ok = 2, that is, wherT® is simply a triangle, an® is aK, (a clique of size 4). In
this case, the lemma says that we can construct a grapiventices that contain&|? essential copies
of K4 that are pairwise edge disjoint, and such that each triangle in the graph belongs to one of these
copies ofK4. Note, that if|Z| = 1 this statement is trivial as we can simply take a single cof§sah
order to construct such a graph. HoweveiZif= mt—°1, the lemma claims that we can construct the
following nontrivial graph: It hasn vertices andZ|?> = n?~°(%) essential copies df, that are pairwise
edge disjoint, such that each triangle in the graph belongs to one of these copigs A$ eachK,
contains at most 4 triangles, this graph contains less tifammiangles. As any triangle appears in at
mostm copies ofK4 such a graph has at mas copies ofk4. Note that any trivial such construction
(e.g. random) will contain roughly*—°) copies ofK4. The fact that we can construct graphs that
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contain many induced copies of a graph, where each two copies have at most 1 common virtek (or
vertices in the case &fEgraphs) while containing relatively few copies of it, will be crucial in the proofs
of Theorem 1.andTheorem 1.3

3.4 Proof ofLemma 3.3

We define &-graphF, similar to the one used ibemma 3.2 The vertex set of consists ofl pairwise
disjoint sets of vertice¥;,...,Vy, where, with a slight abuse of notation, we think of each of these sets
as being the set of integers.1.,m/d. We define the edge set Bfby specifying the edge sets [|*
copies ofD that we put inF. In what follows we refer to thd vertices ofD as integers i{1,...,d}.

For every set of (not necessarily distinct) integrys. .,z 1 € Z, we add toF a copy ofD that is
spanned by the verticeg € Vi, ...,vq € V4, where for 1< i < d we chooses, = E(z,...,%_1,i). In
order to specify the edges of this copy, we simply regard the verices, vy as if they were the vertices
of a regular copy oD and put in the corresponding edges. Namely, for every édge. ., px) € E(T),
we put inF an edge that contains the vertices

E(ZO,...,Zk,]_, pl) Evpla E(ZO7"'7ZK*17 p2) EV[)27 7E(207"'7Zk*17 pk) evpk .

In what follows we denote b§(z,...,z-_1), the copy oD defined using the integers, ...,z 1. This
defines|Z|* copies ofD. These|Z|¥ copies ofD will be the essential copies @ in F in the statement
of the lemma (but we will still have to show that they are induced copié€s iof F). Observe, that any
essential copyD has precisely one vertex in each of the 84ts. ., Vy. Note also, that a& C [m/d*+2],
for everyz, ...,z_1 and 1< i < d, the functiorE satisfies K E(z, ..., Z_1,i) < kd“tm/d“2 < m/d,
thus the vertices “fit” into the sel§, ..., V.

We now turn to prove the assertions of the lemma.\et. ., v bek vertices that belong to one of
the essential copies &f in F. As the vertices of an essential copy belong to different\éethere are
distinctintegers 1< py, ..., pkx < d, such thaty € Vp,, ..., € Vp,. From the definitions oF and the
functionE in (3.1), there are, ..., z_1, such that the following equations hold:

0+ pmza+piznt... +p5a 1=E@,..., % 1,p1)=Vv1 ,

20+ k& +pizat . AP 21 =E(20,- 0, Z 1, PK) = Kk -

If we view the following equations as a setlolinear equations with unknowrss, ..., z_1, they corre-
spond to the matrix equatiolx = b, whereb = {v1,..., W}, x={z,...,z_1}, andA ; = pi’_l. As A
is an invertible Vandermonde matrix (here we use the fact that the intpgears distinct), we conclude
thatz,...,z_1 are uniquely defined by this set of equations. Hence, they belong to precisely one of
the essential copies &f, namelyC(z,...,z_1). We have thus shown that each pair of essential copies
share at most— 1 common vertices. AE is ak-graph, the essential copiesfare in particular edge
disjoint. As by definition, every edge I belongs to one of the essential copie®ofve conclude that
the essential copies @f in F are in factinduced We have thus proved items (1) and (2).

We now turn to prove item (3). Suppoge..., Vi1 arek+ 1 vertices that span a copy ©f namely,
they spam > 3 edges. As any member Bf contains at least 3 edgékjs a core (recalDefinition 1.5.
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Hence, there are distingk, ..., px1 such thaty € Vp,,...,Vie1 € Vp,.,. Suppose the edges ofT are
e €C(za,...,%-11),.---.& € C(2or,...,2- 1,). In order to show that each copy dfbelongs to one
of the essential copies @f we may show that for & i < k—1 we havez 1 = ... = 7. This will mean
that ther edges belong t€(z,...,z-_1). For ease of notation we show thah = ... = z;,. The other
cases are completely identical.

An important observation at this point is that the sub-hypergragh ioiduced orvy,, ...,V is
preciselythe k-graph S defined inLemma 3.2with Py = {ps,...,px+1}. Consider any three distinct
integersj1, j2, ja € {1,...,r}, such that j, <z j, <z j,. By Lemma 3.2eitherz, j, = z1j, = 71}, or
there are positive integefi, B2 < d3¢ such that the following equation holds

Przyj, + Bozajs = (Br+ B2)7aj, -

Assume first that for some choice pf jo, js€ {1,...,r} we havez, j, =z j, = 1, j, and assume for
simplicity thatj; =1, j» = 2, j3 = 3. Consider any other4 j <r and assume without loss of generality
thatz; 1 <z j <z1,. By the above, eithez; ;1 = 21 = 7 ; or there are positive integefl, B> < 3
such thaf1z, 1 + Boz12 = (B1+ B2)z1,j. However, as by assumptian; = z; > and 1, B> > 0 we can
conclude that in this case we also haye = z; > = z; j. We thus conclude that in this case we have

Ni1=242=...=2 .
Assume now that none gf, j2, js € {1,...,r} are such that, j, =z, j, = 71 j,. Suppose we rename
the integergy 1,...,z such thatz; 1 <... <z,. By Lemma 3.2we have for every Zi <r —1 that

there are positive integefl, , Bi, < d3% such that

Bizii—1+ Bi,z1i+1 = (Bi, + Bi,)zui (3.2)
holds (note that by our ordering ef 1, ...,z we satisfy the requirement demma 3.2hata; < ¢; <
bi). But this means that, 1,. ..,z satisfy the(r, d3d2)-gadget8 ={ey,...,&_1} Where

&8 = BiXi—1+ BiXi+1 = (Bi, + Bi,)%

(itis easy to verify that this is indeeo(ad3d2)-gadget). However, as by assumptidis (r, d3d2)-gadget-
free, the integers, 1,...,z; cannot be distinct. Assume, without loss of generality, tat= z; 5. As
711,212,273 satisfy the linear equation given i8.¢) and as by assumptian ; = z; > it must be the
case thatz;3 = 717 = z15. This contradicts our assumption that there is no triple of equal integers
VANIRYANPYRANPE

4 Extremal Hypergraphs and Lower Bounds for P,

4.1 The main results of this section

Our main goal in this section is to prove the following lemma

Lemma 4.1. Let D be a fixed k-graph on d vertices, which contains a copy efT with r edges.
Suppose we can find, for every integer nﬁr,ai3d2)-gadget-free subset Z [m/d**?] of size ni f(m).
Then, for every small enough> 0O, and every large enough integer n, there is a k-graph H on n
vertices that ise-far from being induced D-free, and yet contains onlin®/q(¢)) copies of D, where
a(e) = max{m: (1/f(m))k > &}.
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As we explain shortly, our intention is to apply the above lemma with & $et which the function
f grows as slowly as possible.

We also need the following lemma, which follows from ttenonical graph property-testerf Gol-
dreich and Trevisan inl{] (see also 3)).

Lemma 4.2. Suppose there is a k-graph on n vertices that-far from satisfyingPp (or Pp) and yet
contains @n/q(e)) copies of D. Then the query complexity of any one-sided-error property-tester for
Py (or Pp) is Q(q(e)Y/?), where d is the size of D. In particular, if(g) is super-polynomial irl/e,

then so is the query complexity of any one-sided-error property-testéifgor Pp).

As is evident from the statement bémma 4.2 in order to obtain a high lower bound for testing
5, one would want to apply it to kgraphH that ise-far from satisfyingP}, and contain®©(n?/q(e))
copies ofD with g growing as fast as possible. Inspecting the statemehenfma 4.1we see that
it supplies such &-graph, but in this case the functidnshould grow as slow as possible (in some
sensgy is f~1). Note, that one can use the outputTdfeorem 2.3as an input td_.emma 4.1 Finally,
requiring f in Lemma 4.1to grow slowly, means requiring the sétin Theorem 2.30 be as large as
possible. Finally, observe that we can use the number-theoretic construcfisgreofem 2.3 which
supplies such a set of sizg f(n) with f being sub-polynomial. This will give a super-polynomigl
and thus super-polynomial lower bounds, which are our ultimate goalSedtion5 we indeed apply
the above two lemmas, along witltemma 3.3and the number-theoretic constructionTéfeorem 2.3
In order to provelTheorem 1.2andTheorem 1.3The reader can find further intuition faemma 4.1in
the following subsection. The proofs bémma 4.landLemma 4.Zappear in the following subsections.

4.2 |Intuition for Lemma 4.1

Going back to the discussion following the statemeriterthma 3.3ve see that usingemma 3.3with a
setZ of sizen—°(Y) gets us very close to the requirements.efnma 4.2with two important differences.
Returning to the example &%, from Section3.3, we see that on the one hand thgraph ofLemma 3.3
contains at most?® copies ofK4 onmvertices, which is far better than thé/q(e) copies om vertices,
which Lemma 4.2expects to gét On the other hand, however, the infgraph toLemma 4.2must be
e-far from being induced-free while thek-graph inLemma 3.3s only m—°%-far from being induced
Ks-free as it contains only® 2% copies ofK4. Thus,Lemma 4.1can be viewed as a bridge between
the extremal hypergraph constructionlafmma 3.3and the lower bounds that we can obtain using
Lemma 4.2

4.3 Proof ofLemma 4.1

We start with a key definition used in the prooflafmma 4.1

Definition 4.3 (Blow-up). An s-blow-upof a k-graphT = (V(T),E(T)) ont vertices is thek-graph
obtained fromT by replacing each vertex € V(T) by an independent sétof sizes, and each edge
(Viy, .-, Vi) € E(T), by a completé-partitek-graptt whose vertex classes aig .. ., lj,.

3The reader should note that Kg is complete there is no difference between having it as a subgraph or as an induced
subgraph. However, this lets us keep the “intuitive” example easy to explain.
4A completek-partitek-graph has as its vertex desetsVy, ...V, and its edge set i§{vy, ..., v} 1 v1 € Vi, ..., Vi € V).
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Note, that if we take as-blow-up of ak-graphT, we get ak-graph onst vertices that contains
induced copies off, where each vertex of the copy belongs to a different blow-up of a vertex from
T (simply pick one vertex from each independent set). We call these copiepd@l copie®f the
blow-up. As each set df vertices in the blow-up is contained in at mast special copies oT, it
follows that adding or removing an edge from thgraph can destroy at most* special copies of
T. We conclude that one must add or remove at Idast™ = s¢ edges from the blow-up in order to
destroy all its special copies of.

Proof ofLemma 4.1 Given a smalk > 0, define
m=q(e) . (4.2)

LetZ C [m/d**2] be a(r, d3d2)—gadget—free, and lét be the output otemma 3.3givenD, T, mandZ.
Recall that- hasm vertices. LetH be ans-blow-up ofF, where

n n
= == . 4.2
= o] = [l (42
If necessary, add some more isolated vertices to make sure that the number of vetidspodcisely
n. Claim 4.4andClaim 4.6below complete the proof of this lemma. O

Claim 4.4. The k-graph H defined in the proof bémma 4.1s e-far from being induced D-free.

Proof. Consider two essential copiesDfin F, D; andD,. By item (2) inLemma 3.3D; andD, share
at mostk — 1 verticesv;,, ..., Vv, _, in F. It follows that their corresponding blow-ups ki will share at
mostk — 1 independent sets, ..., l;,_,, which replace the vertices,,...,v; , from F. Now, consider
the blow-ups ofD; andD» in H, denotedD; andD,. As D; and D, share at mosk — 1 common
independent sets, and each of the special copi&infD1/D, haspreciselyone vertex in each of the
independent sets that replaced the verticeB ,ofve get that a special copy &f in D1 and a special
copy of D in D, share at mosk — 1 vertices. Thus, adding or removing an edge fridimcan either
destroy special copies @ that belong taD1, or special copies dD that belong tdD, (or not destroy
any induced copies at all). By item (1) iemma 4.1each of the essential copiesbfin F is induced,
thus, as we explained above, in order to destroy all the special copiessdflaw-up of D, one needs
to add or remove at least edges from the blow-up. AZ| = m/ f(m) we have byLemma 3.3tem (1)
thatF containsm/ f¥(m) essential copies d. ThereforeH containsm®/ f¥(m) blow-ups of copies of
D. We may thus infer that one has to add or delete at least

smk ok ok

fK(m) ~ i) ~ "
edges in order to turhl into an induced-free k-graph, where the inequality follows from our choice
of min (4.1) and the definition o§(¢). Thus,H is e-far from being induced-free. O

(4.3)

In what follows we denote by, the independent set of verticeshhthat replaced vertex from F.
As H is a blow-up ofF it is clear that{vs € It,,...,V € Iy, } is an edge irH if and only if {t1, ...t}
is an edge irF. We remind the reader that by assumptideontains a copy of € 7%, which contains
r > 3 edges. We need the following simple claim:
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Claim 4.5. The number of copies of T in H i§'8 times the number of copies of T in F.

Proof. Assumevy € Iy, ..., Vi1 € lg,,, Spanacopy of inH. AsT is a core the sefl,, ..., I, are all
distinct. AsH is a blow-up ofF we get thaty,...,t. 1 span a copy of in F. We conclude that a copy
of T in H is obtained only by picking a single vertex from each one okthd setd,,..., ., such that
t1,...,tk 1 Span a copy of in F. AsH is ans-blow-up of F, we conclude that the number of copies of
T in H is preciselys“t1 times the number of copies @fin F. O

Claim 4.6. The k-graph H defined in the proof bémma 4.hhas Qn®/q(¢)) copies of D.

Proof. Note, that a® contains at least one copy ©f and each copy of belongs to at mos(td_ﬂ_l) <
nd—k-1 copies ofD, it is enough to show thatl contains at most“+1/q(e) copies (induced or not) of
T. By Claim 4.5 the number of copies df in H is preciselys“t! times the number of copies @fin F.
By item (3) inLemma 3.3each copy ofl belongs to one of the essential copiefofAs each copy of
D can contain at mos(li(fl) < d“*1 copies ofT, andF containsprecisely i/ f¥(m) essential copies of
D, we get thaH contains at most

gkl k. gkl gkl k. pktl gkl gkl
= <
fk(m) fk(m) . mkt1 = m

=O(n*"t/qg(e)) (4.4)

copies ofT, where the first equality is due to our choicesih (4.2), and in the last equality we used the
definition ofmin (4.1). O

4.4 Proof ofLemma 4.2

We need the following result ofilff], mentioned already ir3].

Lemma 4.7. ([3],[14]) If there exists arg-tester for a graph property that makes g queries, then there
exists such am-tester that makes its queries by uniformly and randomly choosing a et\artices,
guerying all their pairs and then accepting/rejecting according to the graph induced by the sample. In
particular, it is a non-adaptive-tester makinqzzq) gueries.

Restating the above, by (at most) squaring the query complexity, we can assume without loss of gen-
erality that a property-tester works by sampling a set of vertices ofggizen) and accepting/rejecting
according to the graph spanned by the setlfhe authors measure the query complexity of a property
tester by counting the number of edge queries. As we measure query complexity by the number of ver-
tices sampled, assuming we always query all possible edges within the sample, we infegifinama 4.7
that we can simply assume that the property tester first samples a set of vertices, queries about all the
edges, and then proceeds to perform some other computation. Also, the ptaohofa 4.7was de-
scribed in [L4] for graphs, however, precisely the same argument carries okegrtaphs. We need the
following simple observations:

Claim 4.8. Suppose Q is a k-graph on g vertices containing no induced copy of some k-graph D. Then,
for any n> q there is a k-graph H on n vertices, which contains Q as an induced subgraph, and does
not contain D as an induced subgraph.
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Proof. It is clearly enough to show that there is suck-graph onq-+ 1 vertices. Letd denote the
number of vertices ob. Suppose first thdd has no vertex of degre@:i) (i.e. a vertex that forms an
edge with all the other subsetslof- 1 vertices). In this case, if we add @a vertex and connect it to
all the (kﬂl) sets ofk — 1 vertices ofQ, we are guaranteed that the nkvygraph spans no induced copy
of D. Suppose now thdd has no isolated vertex. In this case we adtan isolated vertex and thus
guarantee that the newgraph spans no induced copydf The only case left is thdd has an isolated
vertex and a vertex of degréf 1), which is impossible. O

By Theorem 4.7%ve can assume that a property-testerfgrworks by inspecting a random subset
of vertices. The following claim shows that such a one-sided-error property-tester can reject an input
only if it finds an induced copy db in the sample of vertices.

Claim 4.9. Let D be a some k-graphs, and let A be a one-sided-error testétfovith query complexity
g(e,n). If for someey > 0 and n, after A samples a set of vertices of sig®,m), the k-graph induced
by the sample is induced D-free, then A must accept the input.

Proof. Fix anyn andegy > 0 and suppose that when we execliten ak-graphH’ of sizen with € = &,
and the sample of vertices spanis-graphQ (of sizeq(ep, n)) that is induced-free, the algorithm still
rejects the input. ByClaim 4.8there is ak-graphH on n vertices that is induceB®-free and contains
an induced copy of). Suppose we execufeon H with € = 9. AsH andH’ are of the same sizg
when givenH as input the algorithm samples a set of vertices of gizg,n) = [V(Q)|. As we assume
that when giverQ the algorithm rejects, we get that there is a nonzero probabilityAhetl reject H,
contradicting the assumption that it has one-sided error. O

Proof ofLemma 4.2 We start with the proof of[,. As the algorithm is a one-sided-error algorithm, we
get fromClaim 4.9that it can report thatl is not induced-free only if it finds an induced copy @

in it. Observe, that if the tester picks a random subset\adrtices, and an inpi-graph contains only
O(n/q(¢e)) copies (induced or not) d, then the expected number of induced copieB spanned by
xis O(x4/q(e)), which iso(1) unlessx = Q(q(e)*9). By Markov’s inequality, unlesz = Q(q(¢)¥9),
the tester finds an induced copyfwith negligible probability.

The proof forPp is similar. What we need is a version©faim 4.8but with respect to non-induced
sub-hypergraphs. But here the proof is even simpler: If we hdwgraphQ on g vertices that has no
copy of ak-graphD, we can construct k-graph ong+ 1 vertices that contains an induced copy®f
but no copy ofD, simply by adding an isolated vertex @ Note, that here we assume tlahas no
isolated vertices. Clearly when testifig we may assume that this is the case, becau3eisf obtained
from D by removing an isolated vertex, then akgraph on at leag¥/ (D)| vertices, satisfie®p iff it
satisfiesPp. Thus fork-graphs of size at lea$¥ (D)| testingPp is equivalent to testin®p, hence it is
enough to prove a lower bound for one of them. O

5 Proofs of Theorem 1.2and Theorem 1.3

5.1 A lower bound for (almost) all k-graphs

In this section we apply the number-theoretic constructiomreforem 2.3the construction of the ex-
tremalk-graphs ofLemma 3.3as well asLemma 4.1andLemma 4.2in order to provelrheorem 1.2
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We first need the following claim in which we denote bythe complement ob, that is, ak-graph that
contains an edge if and only[lif does not. We also calllegraphD, stronglyT¥-free, if neitherD norD
contains a copy dik.

Claim 5.1. There are no strongly3-free 3-graphs on at least 7 vertices. For any-K3, there are no
stronglyT¥-free k-graphs on at leastk 1 vertices.

Proof. The case ok > 3 is simple. As in this caséil) > 5, onanyset ofk+ 1 vertices eitheD or

D spans a copy df*. For the case dk = 3, observe thab is stronglyT3-free, if and only if each set

of 4 vertices spans precisely 2 edges. Fixing any set of 7 vertices, this set must span p@)ﬁﬁdly

edges, where we count the number of 4-sets, multiply by 2 as each 4-set by assumption spans 2 edges,
and divide by 4, because we count each edge 4 times. Since this is not an integer it is impossible. Thus,
onanyset of 7 vertices eithdd or D spans a copy df. O

Proof of Theorem 1.2 Let D be a fixedk-graph ond vertices. A simple yet crucial observation is that
for everyk-graphD, testing®p is equivalent to testingy. Note, that this relation does not hold for
testingPp. It follows that in order to prove a lower bound for testifig, we may prove a lower bound
for testingP5. By Claim 5.1all the k-graphs in the statement Gheorem 1.Zbesides some 3-graphs
on 4,5 and 6 vertices. See comment below on how to deal with them) are not stiérfghe, hence we
may assume thdd contains a copy of € TX with at least 3 edges. BYheorem 2.3with k = 2 and

h = d3®), there is a3,d¢")-gadget-free s C m/d**2 of size (m/dk*+2) /etV/Iog(m/d*2) — py/ecy/logm

for an appropriate = c(d). This means that we can usemma 4.1with f(m) = e®Vio9m_ |t is easy to
check that in this casg(€) in the statement diemma 4.1satisfies

1 clogl/e
ale) > () , (5.1)

e

for an appropriate constadt= c/(d). By Lemma 4.1we get ak-graph that i€-far from being induced
D-free, and contains onl@(n®/q(¢)) copies ofD. By Lemma 4.2the query complexity of any one-
sided-error property-tester fé can be bounded from below lnye)*/9, which is 6.1), with ¢ replaced
by c'/d. O

It is worth mentioning that there are strongl§-free 3-graphs on 4,5, and 6 vertices. For 4 vertices
there is a unique such 3-graph, whichOs, (which contains 2 edges) mentioned in the statement of
the Theorem 1.3 This is the onlyk-graph for which we do not know wheth&, is easily testable. For
5 vertices, it is easy to verify that the only strondl§-free 3-graph has the edgéél, 2,3), (2,3,4),
(3,4,5), (4,5,1), (5,1,2)}. This 3-graph is better understood if one considers the 5 vertices on a cycle,
and the edges as all triples consisting of three consecutive vertices on the cycle. In what follows we call
it D3s. Itis easy to check thdds s is a hyper-cycle (seBefinition 1.9, thus we can prove a version of
Lemma 4.1(namely, constructing k-graph, which ise-far from beingD3z 5-free and yet contains only
O(n®/(1/€)c1°9%¢) copies ofD35) that instead of usingemma 3.3and Theorem 2.3uses_.emma 6.1
andLemma 6.7 which are proved below. The details are very similar. For 6 vertices there are also
some 3-graphs that are strondi§-free, however, every 5 vertices of such a 3-graph must span a copy
of D3 5 thus we can again use the same arguments d3sf@to prove that any such 3-graph is not easily
testable.
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5.2 The improved lower bound

Proof of Theorem 1.3 Observing, as in the proof ofheorem 1.2that we may either prove a lower
bound forD or D, we recall that by Ramsey’s Theorem, for any intelgénere is an integer(k) such
that for anyk-graphD on at least (k) vertices, eitheD or D contains a copy oF¥. Hence, we may
assume thad contains a copy ofK, which is a member of with k+ 1 edges. ByTheorem 2.3there
is a(k+ 1,d%"")-gadget-free seZ C m/d**2 of size

‘Z‘ > (m/dk+2)/ec'(log(m/dk+2))l/“°92kj _ m/ec(logm)l/uog2kJ

for an appropriate = c(d, k). This means that we can usemma 4.1with f(m) = g<loam*!®/ "¢ s
easy to check that in this cagée) in the statement diemma 4.1satisfies

: (5.2)

1 c(log1/e)llogkl
)

q(e) = (

for an appropriate constaect = c/(d). By Lemma 4.1we get ak-graph, which ise-far from being
inducedD-free, and contains oni@®(nd/q(¢)) copies ofD. By Lemma 4.2he query complexity of any
one-sided-error property-tester f&f, can be bounded from below mfe)Y/9, which is 6.2), with ¢
replaced by’ /d. O

Note, that though the statementTdieorem 1.3tates the improved lower bounds only kegraphs
on at least (k) vertices, it should be clear that the same lower bound also applies tk-graph on
less tharr (k) vertices such that either tHegraph or its complement spans a copyFdt This, in
particular, applies t&K itself, thus, as mentioned after the statemenTloéorem 1.3we indeed get
an improvement on the lower bound for testifip, from [17]. It is worth mentioning that if one is
willing to replace|logk| with |log[k/2+ 1]] in the statement ofheorem 1.3then one can obtain this
slightly weaker lower bound faany k-graph on at least+ 1 vertices, instead dé-graphs on at least
r(k) vertices. One just has to note that for any set-6f1 vertices, either thk-graph or its complement
spans at leastk/2+ 1| edges. One then proceeds as in the prooftiforem 1.3y taking a set,
which is ([k/2+ 1],d%")-gadget-free instead ¢k+ 1,d3@")-gadget-free.

6 More on Linear Equations and Extremal Hypergraphs

In this section we prov&heorem 1.7 Analogously to our proof technique f6t, the first step in the
proof of Theorem 1.7s to show that given a hyper-cycl2 = (V,E) on d vertices we can construct
a k-graph that contains many copiesfsuch that from each copy @ we can infer a certain linear
equation. The main idea, asliemma 3.2is to give an algebraic construction of such a graph, but as
we explain below, in this case we have some additional difficulties.

Let mbe an integerZ C [m| andD a hyper-cycle of size, whose vertices are numberétl ..., d}
as in the definition of a hyper-cycle. We defin&-graphF = F(D, Z) as follows: the vertex set d¥
consists ofl pairwise disjoint sets of verticd4, . ..,Vy, where, with a slight abuse of notation, we think
of each of these sets as being the set of integers,t**'m. We define the edge set Bfby specifying
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the edge sets dZ|¥ copies ofD that we put inF. For every set of (not necessarily distinct) integers
2,...,%- 1 € Z, we define a copy db denotedC = C(z,...,z-_1): As the vertex set o, we choosel
verticesvy € Vy,..., Vg € Vg, Where for 1<t < d we choose; = E(z,...,%_1,t), andE is the function
defined in 8.1). Note, that for any choice af,...,z_ 1 € Z we haveE(z,...,z_1,t) € [d¥1m],
thus the vertices “fit” into the setg,...,Vy. As for the edges o€, we simply regard the vertices
vi €V1,...,Vg € Vq as if they were the vertices 1.,d in D, namely, if(ts,...,t) € E(D), we put inF

an edge that contains the vertices

E(207"'azk—l7tl) 6\/t]_7 E(Z()?"'azk—l?tZ) E\/tz) 7E(ZO7"'aZk—1atk) e\/tk .

The main technical step in this section is the proof of the following lemma, whose role in the proof of
Theorem 1.7s analogous to the role dlemma 3.2in the proof ofTheorem 1.2andTheorem 1.3

Lemma 6.1. Let m be an arbitrary integer, Z [m] and D a hyper-cycle on d vertices. Construct
F =F(D,Z) as above. Suppose & V1,...,Vq € Vg span a copy of D, withy\playing the role of vertex t
in D. Suppose that fdk <i <d—k+2edge ebelongs to €z, . ..,Z-_1). Then, foreverg <j<k-—-1
there arepositive integers a, ..., a4_k+1 < ¢ = c(d) such that

a1-zj1+a-Zj2+...+ad-ke1-Zjdke1 = (A1 +a+... +8d-ks1) - Zjd—ki2 -

In order to applyLemma 6.1 we need another notion of linear equations suitable for it, which we
formulate as follows:

Definition 6.2 ((k, h)-linear-free). A set of integer&Z C [m] = {1,2,...,m} is called(k, h)-linear-free
if for every k positive integersay, . ..,ax < h, the only solution of the equation

azn+...tak=(ar+...+a)z1 , (6.1)
which usek+ 1 integers fron¥ satisfiesyy =z = ... =z, 1.

In simple words, ifZ is (k,h)-linear-free, then whenevex, ...,ax < h, the only solution to §.1)
using integers fronz, is one of theZ| trivial solutions. Similar to our proof technique ®heorem 1.2
andTheorem 1.3in this case we will also need a der{&eh)-linear-free sets of integers, with which we
will apply Lemma 6.1

The main difficulty in provind-emma 6.1is two fold; While we still have to show that we can extract
a linear combination of the integers, as we didleamma 3.2 we are faced with the following problem;
suppose we manage to extract a linear equation but it is of the Zpare, — z3 = z4. In Lemma 3.2
this was not an issue, as in that lemma the required equation only relates 3 integers, thus if we get an
equation of the form, say,a3- 2b = ¢, we can simply “shift” D to the other side and get the required
equation. This is not possible in our case. The problem is even more serious; as we mentioned above
(and analogously to our proof technique ), our ultimate goal will be to applzemma 6.1with a
(k,h)-linear-free set of sizent~°(Y). However, it follows from the pigeon-hole principle that the largest
size of a subset dm| without solutions t@; + 2o — z3 = z4 is O(/m). Thus, we must make sure that all
the coefficients in the linear equation we extract are positive. One may also ask, why we cannot prove
our lower bounds fofp by using only linear equations with 3 unknowns, like we useffgr The main
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reason for that is that faPy, we can prove a lower bound either fror its complement, and one of
them must contain a copy 8. For Pp, however, we cannot use this reasoning and have to deaDwith
itself, which does not necessarily contain a copyaf

The proof ofTheorem 1.%will follow by using Lemma 6.1together with arguments similar to those
used in the proofs ofemma 3.3 Lemma 4.1landLemma 4.2 The proofLemma 6.1appears in the
following subsection, and the proof ®heorem 1.7&appears irbection6.2

6.1 Proof ofLemma 6.1

For the proof ofLemma 6.1we need the following simple observation:

Claim 6.3. For a given set of p< r distinct integers{, ..., t, bounded by r, let A be the matriR); ; =
ti"’“_J —(ti—1) p+1-] (1<i,j < p). Then, there is a nonzero integer vector v, all of whose entries are
bounded (in absolute value) by y such that forl <i < p— 1 (Av); = 0, while (Av), > 0.

Proof. As the integers;, ..., t, are distinct, the Vandermonde mat(ix); j =t/ * is invertible. AsA can
be obtained fronv by rank preserving operationa,is also invertible. ByClaim 2.7there is a nonzero
integer vectow, all of whose entries are bounded frfp)P/2 < (rp)P < r%, such that for Ki < p—1
we have(Av); = 0. As A is invertible andv is non zero, it cannot be the case tiav), = 0, and if
(Av)p < 0 we can replace by —v. O

As a first step towards the proof bémma 6.1we prove the following claim.

Claim 6.4. Let m be an arbitrary integer, Z [m] and D a hyper-cycle on d vertices. ConstructF
F(D,Z) as inLemma 6.1and denote bithe vector(i,i?, ..., i"*l) and byz the vecton(zy j, 2, . .. , Z—1,i)-
Then the following equation holds

Z-Q2-D+.. +Z%x1- d—k+2—-d—k+1) =z xz2- (d—k+2-1) . (6.2)
Also, forevenl <i<d-k+1landi+ 1<t <i-+k-—2the following equation holds
Z1-(t+1-t) -7z - (t+1-t)=0. (6.3)

Proof. Letvy € V4,...,vq € Vy bed vertices spanning a copy B, with v € V; playing the role of vertex
i in D. For every 1< i <d—k+ 1 consider the verticeg € V; andvi; € Vi;1 and recall that by the
definition of a hyper-cycle they belong &< C(z%;,...,z-_1;). If we regardv; andvi;1 as integers we
get from the definition of thatv; = E(z;,...,%-1,,i) and thatvi;1 = E(z,...,Z-1j,i +1). From
the definition ofE in (3.1) this means that (note thas; disappears)

Vier—Vi=2z- ((i+1) =) 42z ((1+1%2=i9) 4.4z ((+ D= . (6.9)

As in the statement of the claim, let the vecfodenote(i,iz,...,i"*l) and let the vector denote
(21,224, ...,Z-1i). Therefore, we can write for every<li < d —k+ 1 the vector equation

Vi+1—Vi:Z‘(i+1—T) . (6.5)
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201+321+ 71231+ 212+ 522+ 19232+ 213+ 7223+ 37233 = 321 4+ 152, 4 + 6323 4
211+521+19231 — 212 — 522 — 1923 > =0
21+ 721+37231— 212~ 122 — 3723 =0
2o+ T22+37232 —213— 1223 — 37233 =0
212+922+61232 21392361233 =0
213+923+61233 =714+ 924+ 61234
213+ 1123+ 191233 =214+ 112, 4 + 19123 4

Figure 1: The linear equation§.Q), £12,€13,£23,£24,E34,E35 whend = 6 andk = 4.

As eq4_ko contains the vertice& k.2 € Vg_ki2,---,Vq € Vg we have foreveryl —k+2<i<d-1
Vipr—Vi=Z k2 (i4+1-1) . (6.6)

Summing 6.5 for 1 <i <d-k+1and 6.6) ford—k+2 <i <d-—1we obtain

Va—-V1=21-2-1)+...+Z k1 - (d—k+2—-d—k+1)+Z¢2- (d—d—k+2) . (6.7)

As eq4_k.2 contains the verticeg € V; andvy € Vy, we also have by the same reasoning

Va—V1=Zi k2 (d-1) . (6.8)

Combining 6.7) and 6.8) we obtain 6.2).
In order to obtain the other equations, for anx1 < d —k-+ 1 consider edge; and recall that
it contains the vertices...,i +k—1. Note that for every +1 <t <i+k— 2 verticest andt + 1
belong to bothe ande . 1. By the same reasoning used to obtd&irdl and ©.5) we can write for every
i+1<t<i+k-2
Vipr—w =% (t+1-1) (6.9)

Vip1—V% =Z51- (t+1-1) (6.10)
i

1
Combining these equations we gét3) for everyi+1 <t <i+k— 2, thus completing the proof. [

For the rest of the proof let us use the following notation: for every <t <i+k—2 denote by
the equation of§.3). Note, that for every X i < d—k+ 1 we havek— 2 equation<;;. To illustrate the
main ideas of the proof the reader may want to consider the special casedvhérandk = 4 depicted
in Figure 1
We also need the following claim. For its proof, the reader may find it useful to refer to the example
given inFigure 1
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Claim 6.5. For every1 <i <d-—k+ 1 there is a linear combination 0f6.2) and equations
&iji+1,-- -, Eiirk—2 With integer coefficients, in which the coefficient of is positive, while the coef-
ficients of zo, ...,z k1 vanish.

Proof. Let ay, ..., 0x—1 denote the unknown coefficients @&.2) and&i;1,.. ., & i1k—2, respectively, in
the linear combination, which we seek. Suppose we \Writd linear equations, . .., &1 in unknowns
oq,...,0x—1, Wwhere equatioe, requires the coefficient @f ; to vanish in the linear combination d.Q),
Eijit1s-- -, Eiirk—2 With coefficientoy, . .., ax_1. Observing the coefficients af;, ...,z in (6.2 and
in Eiji1,...,Eiik 2 it is easy to see that the entries of the- 1) x (k— 1) matrix A, whosei'" row
contains equatior, satisfies the properties @flaim 6.3 We can now take the entries of the vector
whose existence is guaranteed@gim 6.3 to be the required integer coefficiemts, . . ., ox_1. O

Proof ofLemma 6.1 We first observe that6(2) is an equation irg;;, where for 1< j <k-1 and

1 <i <d-k+1we haveg;; on the left hand side of the equation, and for every 1< k—1 we have

Zj d—k+2 On the right hand side. Furthermore, all the coefficients in this equation are positive. Finally,
for every 1< j <k—1 the sum of the coefficients @f 1,...,zj 4—k+1 is equal told — k+ 2)l —1, which

is precisely the coefficient @ 4. It thus follows that §.2) is thesumof thek — 1 equations that we
need to obtain in order to prove the lemma. In order to simplify the notation we now turn to show how
to obtain the linear equation relatiag, . ..,z g—kt2. The other cases are completely identical.

To simplify the rest of the proof, when we later refeffixang i we mean obtaining a linear equation
inwhichzj,...,z_1; do not appear, while the coefficientzf; is positive. Our main idea of extracting
from (6.2) the required linear equation relatiagy, . ..,z 4_k2 is the following: For 1<i <d—k+ 2,
equation 6.2) contains the variables , . . ., z.1 i, while we want an equation in which ordy; appears.
We thus need to fikfor every 1< i < d —k-+2. By Claim 6.5we know that forevery K i <d—-k+1
we can find a linear combination 08.@) and &, 1,..., & +k—2, Which fixesi. The main problem is
that we need a linear combination which simultaneously fixes aByppose we first usélaim 6.5in
order to obtain a new equation, denotedvhich fixesi = 1. We would now want to reappli@laim 6.5
in order to fixi = 2. The only difficulty is that we would now want to take a linear combination of
€23,...,E2x With €, and not with 6.2) as taking a linear combination witl6.@) might “bring back”
21,y -11-

However, it is easy to see that we can also find a linear combinatiéa9f.., €, and€&, which
fixesi = 2. By Claim 6.5 we know that there is a linear combination&fs, ..., €2k and 6.2), which
fixesi = 2. Consider now the coefficients af,...,z_1, in equations §.2), €1»,...,E1x-1 and
€23,...,E2xk. Note, that the coefficients, which appear in equatidn8) (€1 2,...,E2k_2 also appear
in equations§.2), €>3,...,E2k. To be more precise, the coefficientszp, ...,z 12 in equation »
are precisely the coefficients @f »,...,z_12 in (6.2) and for every 3< i < k—1 the coefficients of
Z19,...,%- 12 in equationty; are precisely the coefficients bf», ...,z 12 in equationt,;_1. Thus, as
¢ is alinear combination of(2) and€ , ..., €2 k1 We infer that if there is a linear combination &£ ?)
and€3,...,Exk, which fixesi = 2, then there must be such a linear combinatioé ahd€s 3, ..., Exk.

It is finally important to note that a5 1, ...,21 k-1 do not appear in equatio s,..., ok then in the
new linear equation= 1 remains fixed.

Note that the above argument can be generalized to aryix< d —k+ 1 as equations
&ijit1,---,Eijirk—2 do not contain the unknowng p,...,%_1p for any p < i, and the coefficients
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of z1,...,zx1 appearing in §.2) and &_1j,...,&_1i1k-3 also appear in equations$.p) and
Eiji+1,---,Ciirk—2. Hence, we can apply an iterative procedure, where iritthstep we add to§.2)
an appropriate linear combination of equatidng, 1, ..., & i;k—2, Which fixesi. Moreover, later itera-
tions of this procedure will not change the coefficientf, ...,z 1, for any p <i. In particular, if
in iterationp we fixedi = p, then we will also have this property at the end of the process. We have thus
established that for £ i < d—k-+ 1 our process obtains in iteratid@a linear combination in which for
everyp < i the coefficient ofz, j is positive, while the coefficients @ p, ..., z_1 p have vanished. We
now observe that as both i6.¢) and ©.3) the coefficient ofz 4k 2 is equal to the sum of the coeffi-
cients ofz 1,...,7 g—k_1, it must be the case that after iteration- k+ 1 the coefficient o 4k 2 is
positive while the coefficients @b g2, ..., Z-1d-k+2 have vanished, thus= d —k+ 2 is also fixed.
This means that we have obtained the required equation relating », ...,z g—k+2. As for the size of
the integers in this linear equation, note that the coefficients.8f &nd 6.3) are bounded by* < d9.
As we apply the above iterative proceds-k+ 1 < d times, Claim 6.3guarantees that when we are
done the coefficients are bounded by a functiod ofly.

O

Corollary 6.6. For every d, there is e= c(d) such that if we construct the k graph F iremma 6.1
with a (d — k+ 2,c)-linear-free set Z, then F contains precis¢B|® copies of D spanned by vertices
Vi €Va,...,Vg € Vg, With 4 playing the role of vertext in D.

Proof. The main idea is simply to show that the only such copie® dfelong to the same copy of
D defined for some choice of integezs ...,z 1 € Z. Consider any copy oD spanned by vertices
Vi €V1,...,Vg € Vy, with v playing the role of vertekin D. Suppose for every 4 i <d—k+2 edges

of D belongs taC(zj, ..., z-1;). Lemma 6.1guarantees that for every<l j < k— 1 there are positive
integersay, ...,aq4-k+1 < ¢ = ¢(d) such that the following equation is satisfied

a-Zj1+a-Zj2+...+ad ki1 Zjdki1= (@ +ax+...+ad k1) Zjdki2 -

Therefore, if we use a s&t which is(d — k+ 2, ¢)-linear-free it must be the case that for every § <
k—1,we havezj1 =zj> = ... = Zj 4_k+2. To complete the proof we just have to show that we also have
201 =122 = ... = Znd—k+2 as this will imply that all the edges d@ belong to the same copy defined
usingzp1,211,...,%-11. 10 show this we observe that for every<2t < d —k+ 2, vertexv € 4 is
common to botlg_; ande. This means that

E(ZO.,t—la T 7Zk71,t717t) = Vt = E(Zo,ta ctty Zk717t,t) .
As we already know that for everyd j < k—1 we havezj; = z; .1, the above equation implies that
Z1-1 = Zoy holds for every 2t < d—k+ 2, thus completing the proof. O
6.2 Proof of Theorem 1.7

GivenLemma 6.1 the proof ofTheorem 1.7ollows by going along the lines of the proofslofmma 3.3
and Lemma 4.1 with one key difference, which we shall explain. In order to avoid repeating the
same arguments we will just sketch them, while assuming that the reader is familiar with the proofs
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of Lemma 3.3andLemma 4.1 As in Lemma 4.1 we will also need a large set of integers that does
not satisfy linear equations similar to the one we extract by usgmgma 6.1 We will thus need the
following:

Lemma 6.7. For every k and h there is € c(k,h), such that for every n, there is (&, h)-linear-free
subset ZC [n] = {1,2,...,n} of size at least

m

1212 S eem - (6.11)

By using Behrend’s techniqué]| this lemma has been proved i) fand [9] for the case ok = 3
and arbitraryh, and in [1] for the caseh = 1 and arbitrank. As the proof of the above lemma simply
combines the ideas ot] and [4], we do not include it here.

Proof of Theorem 1.7sketch. To further simplify the proof, we will use to indicate (possibly distinct)
constants that depend only dnLetD be a fixedk-graph ond vertices, whose corie, contains a hyper-
cycleR, of sizer (< d). Denote byl (< d) the size ofL and assume we rename its vertices such that a
copy of Ris spanned by the firstvertices ofL, with every vertex I< i <r playing the role of vertex
i of R. As in the proof ofTheorem 1.2the main idea is to applyemma 4.2by constructing &-graph
H that ise-far from satisfyingPp, and contains onlp® /q(¢) copies oD, with (&) > (1/€)°'°9%¢. To
this end, we will first construct kgraphF (as inLemma 3.3, and then take an appropriate blow-up of
it (as inLemma 4.).

Giveneg, letmbe the largest integer satisfying

eevioam - 1/¢ (6.12)
It is easy to see that
m> (1/g)¢09¢ | (6.13)
LetZ be a(r — k+ 2,c)-linear-free subset dfm|. Note, that byLemma 6.7ve have
m
> :
121> gcv/fogm

Define ak-graphF as follows: It hag/ clusters of vertice¥, ..., V; of sized*?m each (thusF has
¢d*?mvertices). For each set &fintegersz, ...,z_1 € Z we put in a copy oL in F spanned by the
verticesvy € V,...,v; € V, with v; playing the role of, andv; = E(z,...,z_1,1), with the functionE
define in B.1) (note, that the vertices fit into the safs...,V,). As in Lemma 3.3item (2), one can
easily show that we have thus defined

Z|< > s

— gcv/logm

copies ofL, with each pair sharing at molst- 1 vertices. In particular these copies are edge disjoint. It
will also be important for the rest of the proof to note that the sub-hypergraphwiiich is spanned by
the firstr vertices, is precisely thegraph defined ihemma 6.1(with R being the hyper-cycl® in the
statement of the lemma). We thus get®grollary 6.6that if we took anr — k+ 2, c)-linear-free ser,

with a sufficiently smalt (in terms ofd), then there ar&Z|" choices of vertices; € Vy,...,v; €V, such
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thatvy,...,v; span a copy oR with v playing the role of vertex or R. In what follows we call such
copies ofR nice

Suppose we construct arvertexk-graphH, by taking am/(¢d‘*?m) blow-up of F (recall thatF
has¢d+?mvertices). By repeating the argument@#aim 4.4 it is not difficult to see that aB contains
at leastmk /e®v°9™ edge disjoint copies df, we may infer thaH contains at leagt*/e®V°9™ edge-
disjoint copies ofL. By our choice ofmin (6.12 we get thatH is e-far from beingL-free. It can be
easily shown that as is the core oD, in this caseH is alsoe-far from beingD-free.

We are thus left with showing th&t contains relatively few copies @. By repeating the argument
of Claim 4.6 it can be shown that & spans at mosEZ|¥ nice copies oR, thenH spans at most

2 gt = ) =0t

nice copies oR (observe that we always have- k). Assume we prove that every copy Bfspanned
by H contains a nice copy dR. It would thus follow that as each copy &fis contained in at most
(4",) < n9" copies ofD, thatH spans at mosD(n?/m) copies ofD. By (6.13 we would get the
required upper bound on the number of copieBa&panned by.

We thus only have to show that every copyldEpanned byH contains a nice copy d®. Given a
copy ofD in H, consider the following homomorphism: V(D) — V(L): supposer € V(D) is one of
the vertices (irH) of the independent set that replaced veitexV;, then we maw toi. Note that this is
indeed a mapping frond (D) to V(L). Also, note that if(i,...,ix) ¢ E(L) then inF there are no edges
connecting vertices of;,,...,Vi.. AsH is a blow-up we infer thap is indeed a homomorphism. As
L is by definition a sub-hypergraph Bf, the mappingp induces a homomaorphisgy, from L to itself.
By the minimality ofL (recall Definition 1.5, we may infer thatp’ is in fact an automorphism, that is
(i1,...,ik) € E(L) & (¢'(i1),...,9(ik)) € E(L). This means thap’ maps some copy d® C D to the
sub-hypergraph df spanned by vertices 1 .,r. Finally, by our definition ofp this means that this is a
nice copy ofR. O

7 Proof of Theorem 1.4

We start this section with the proof dtheorem 1.4oart (i). To this end, we need the following well
known lemma of Erds and Simonovits.

Lemma 7.1 ([L0]). For every t and k, there are constantg-a no(t,k) , c=c(t,k) andy = y(t,k) > 0
with the following properties: For every t .. tx <t, every k-graph on & ng vertices, which contains

.....

ot ke

We comment that the proof of this lemma is describedlifj for the casd; = ... = tx. However,
simple modifications of the argument give the above lemma. Observe, Kagtaph, which ise-far
from beingD-free, whereD = Ky, . 1., must contain at leagink >> nk~7 edges. From the above lemma
we infer that such &-graph must contaiee' n copies ofK. Hence, as observed in7], there is a
one-sided-error property-tester f8p that simply sample®((1/¢)!") sets off vertices, and accepts iff
it finds no copy ofD. By the above claim it finds a copy @f with high probability. As we now show,
we can improve this simple upper bound and show a lower bound, which is nearly tight in many cases.
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Proof of Theorem 1.4part (i). Let c andng be the constants dfemma 7.1 Given an inpuk-graphH
onn > ng vertices, the algorithm samplestl(ce!’ /%) vertices and declardsd to beD-free iff it finds
no copy ofD in the sub-hypergraph spanned by the set of vertices. CleaHyisD-free, the algorithm
acceptdH with probability 1. So assumid is e-far from beingD-free. We wish to show that with high
probability the set of vertices spans a copyDof Recall that such &-graph must contain at leash
edges.

For a vertex denote byd(v) the degree of, namely, the number of edgesldfto whichv belongs.
For a vertexv in H denote byH (v) the following (k — 1)-graph: we take all the edges to whigh
belongs and remowefrom them. Note that the number of edgedHdl) is preciselyd(v), and that (v)
obviously has at mostvertices. It follows fromLemma 7.1that for some fixeg > 0, if d(v) > nk—1-7,

thenH (v) contains at least
t*/t
C<d<v>> M o
nk—1

copies of thgk — 1)-partite(k— 1)-graphK, .t ,, wheret’ = t—ty=t;+...+t1. Onthe other hand,

.....

(B

copies ofKy, . 4 ,. Hence, all verticey belong to at least this many copies of tk@artite k-graph

K =K.t ,,1, Wherev plays the role of the single vertex in the last vertex clask ofSuppose we
samplet vertices uniformly at random fromd. Let X, be an indicator random variable for the event that
these vertices form a copy &f along with vertexv, such thaw plays the role of the single vertex in the
last vertex class df. By (7.1),

d(v) t* /t 1\ !/
PriX,=1] > max(O,c(nk_l> —C o

DefineX = ¥, X,. The expectation ofX| thus satisfies

howeverH (v) contains at least

t*/t
E(|X]) = ZPr[xV: 1] > CZ <gé"z> —czn—ﬂ*/tk

t*/tk . i i
>cn ( Zv:k(V)) —cnt /% > en(ke)t /% —o(n) > 2cnet k&,

where in the second inequality we have applied Jensen’s inequality to the first summation, and in the
third we have used the fact thatmust contain at leagin* edges. Observing th&| < n, we conclude
that

2cne' /% < E(|X]) < cnet /% 4+-n.Pr|X| > cne /%]

Therefore,
Pr{|X| > cne' /%] > cet /%
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Hence, by Markov’s inequality, after sampling/b@! /% sets ot’ vertices, with probability at leasya0
we find at least one set of vertices, which forms a copy d&f with at leastcne! /i of the vertices of
H. After finding this set ot’ vertices, all we need i vertices that form a copy df with this set of
vertices, as together they would form a copyof By assumption, there are at lease! /% vertices
that form a copy oK with the set o’ vertices. By Markov’s inequality, after samplingtiQ(ce! /%)
vertices, with probability at least/90 we find the required set of vertices. In total, we sampled
10(t 4 ... +ty) /(ce'' /%) vertices, as needed. O

Proof of Theorem 1.4part (ii). Consider the randomgraphH (n, 2k e), that is, &-graph om vertices,
where each set df vertices forms an edge randomly and independently with probabikity. 2The
expected number of edgeskhis obviously XKS(E) > 2en¥, hence, by a standard Chernoff bound, the
number of edges iRl is at leas€en® with probability at least 3/4 (in fact, the probability is-12-©(™)
but we do not need this stronger estimate here). Asdogma 7.1 everyk-graph with5 nk edges contains
a copy ofD, we get that with probability at least 3Kt is e-far from beingD-free.

Fix a setofd =t; +...+tk vertices, wherg is the number of vertices & in its vertex-class number
i. The number of ways to partition this set irksubsets of sizes is at mostd!. The probability that
any of these partitions spans a copyDbis at most(ﬁ;) (2kke)|E‘, wheret* =ty -...-tx. Therefore, the

expected number of copies bBfin H(n, 2k e) is at most

n t*
I KeolEl « nd(t*oKKe) El
<d>d.<|E|>2ke < nf(t*2ke)’= .

By Markov’s inequality, the probability that the number of copiedois 4 times its expectation is at
most 1/4. We conclude that there i&graph, which is botte-far from beingD-free, and yet contains
less than

and /(1/t* 2kKe) Bl

copies ofD. By Lemma 4.2 the query complexity of a one-sided-error property-testerHferis
Q((1/¢)IEld). O

8 Concluding Remarks and Open Problems

e The most interesting problem related to this paper is to give a complete characterization of the
k-graphsD for which Pp is easily testable. We believe that the techniques presented in this paper

should be useful in resolving this problem. Itis known thatfer 2, propertyPp is easily testable
iff D is bipartite. It seems likely that the “right” characterization is that for lakyeropertyPp is
easily testable ifD is k-partite. UsingTheorem 1.2we can rule out the possibility of extending
the characterization &€ = 2 to, “Pp is easily testable ifD is 2-colorable.” Indeed, note that for
k > 2, FK, the completek-graph onk + 1-vertices, is 2-colorable. On the other handPas is

equivalent taP,, we get fromTheorem 1.2hatPg« is not easily testable.

¢ In light of Theorem 1.2one may hope to show that the orlygraphsD, for which Py is easily
testable are the singkeedges. This, however, is false. As showndh vhenk =2 andD is a path
of length 2, propertyPj; has a one-sided-error tester, whose query complexid(lisg(1/¢)/¢).
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It would thus be interesting to decide if for= D3, (seeTheorem 1.2 the propertyPy is easily
testable.

It would also be very interesting to improve the lower bounds obtaindth@orem 1.31t should

be noted that using our techniques, one cannot obtain lower bounds that match the current upper
bounds. For example, the best known upper bound for testingor D being a triangle, has

query complexity that is a tower of exponents of height polynomial/in As is evident from the
statement oLemma 4.1in order to prove a matching lower bound using our methods, one would
have to use a3, h)-gadget-free subset of the finstintegers of size&2(m/log*m) (and observe

that such a set contains no 3-term arithmetic progressions). However, by a result of Bo8irgain [
every subset of the firsh integers of sizeﬁ(m/« /logm/log Iogm) contains a 3-term arithmetic
progression. Thus, the best lower bound one might hope to prove using these techniques is roughly
2l09(1/¢)/¢* ' \which is very far from the current upper bound. Also, any one-sided-error property-
tester forPy, = Pg_ with query complexity 2((/2°) would imply an improvement of Bourgain's

result.
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