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Abstract: For a fixedk-uniform hypergraphD (k-graph for short,k≥ 3), we say that a
k-graphH satisfies propertyPD (or propertyP∗D) if it contains no copy (or no induced copy)
of D. Our goal in this paper is to classify thek-graphsD for which there are property-testers
for testingPD andP∗D whose query complexity is polynomial in 1/ε. For suchk-graphs we
say that propertyPD (or propertyP∗D) is easily testable.

For P∗D, we prove that aside from a single 3-graph,P∗D is easily testableif and only
if D is a singlek-edge. We further show that for largek, one can use more sophisticated
techniques in order to obtain better lower bounds for any large enoughk-graph. These
results extend and improve the authors’ previous results about graphs (SODA 2004) and
results by Kohayakawa, Nagle and Rödl onk-graphs (ICALP 2002).

For PD, we show that for anyk-partitek-graphD, propertyPD is easily testable. This
is established by giving an efficient one-sided-error property-tester forPD, which improves
the one obtained by Kohayakawa et al. We further prove a nearly matching lower bound
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on the query complexity of such a property-tester. Finally, we give a sufficient condition
for inferring thatPD is not easily testable. Though our results do not supply a complete
characterization of thek-graphs for whichPD is easily testable, they are a natural extension
of the previous results about graphs (Alon, 2002).

Our proofs combine results and arguments from additive number theory, linear algebra,
and extremal hypergraph theory. We also develop new techniques, which we believe are of
independent interest. The first is a construction of a dense set of integers which does not
contain a subset that satisfies a certain set of linear equations. The second is an algebraic
construction of certain extremal hypergraphs. These techniques have already been applied
in two papers under publication by the authors.

1 Introduction

1.1 Definitions

All the hypergraphs considered here are finite and have no parallel edges. Ak-uniformhypergraph (or
k-graph, for short)H = (V,E), is a hypergraph in which each edge contains preciselyk distinct vertices
of V. As usual, a 2-graph may be referred to simply as a graph. LetP be a property ofk-graphs, that
is, a family ofk-graphs closed under isomorphism. Ak-graphH with n vertices isε-far from satisfying
P if one must add or delete at leastεnk edges in order to turnH into a k-graph satisfyingP. An ε-
tester, or property-tester, for P is a randomized algorithm which, given the quantityn and the ability to
make queries whether a desired set ofk vertices spans an edge inH, distinguishes with high probability
(say, 2/3) between the case ofH satisfyingP and the case ofH beingε-far from satisfyingP. Such
anε-tester is said to haveone-sidederror if whenH satisfiesP it determines that this is the case (with
probability 1). Theε-tester is said to havetwo-sidederror if it may err in both direction, namely if
it has nonzero probability of acceptingk-graphs that areε-far from satisfyingP, as well as nonzero
probability of rejectingk-graphs that satisfyP. The propertyP is calledstrongly-testableif, for every
fixed ε > 0, there exists a one-sidedε-tester forP whose total number of queries is bounded only by a
function ofε that is independent of the size of the inputk-graph. This means that the running time of the
algorithm is also bounded by a function ofε only, and is independent of the input size. In this paper we
measure query-complexity by the number of vertices sampled, assuming we always examine all edges
spanned by them. For a fixedk-graphD, let P∗D denote the property of being inducedD-free. Therefore,
H satisfiesP∗D if and only if it contains no induced sub-hypergraph isomorphic toD. We definePD to
be the property of being (not necessarily induced)D-free. Therefore,H satisfiesPD if and only if it
contains no copy ofD.

The general notion of property testing was first formulated by Rubinfeld and Sudan [24], who were
motivated mainly by its connection to the study of program checking. The study of the notion of testabil-
ity for combinatorial objects, and mainly for labeled graphs, was introduced by Goldreich, Goldwasser
and Ron [13]. See [11] and [23] for surveys and additional references on the topic.
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1.2 Previous results

In [3] it is shown that every first order graph property without a quantifier alternation of type “∀∃” has
ε-testers whose query complexity is independent of the size of the input graph. It follows from the main
result of [3] that, for every fixed graphD, the propertyP∗D is strongly testable. Although the query
complexity is independent ofn, it has a huge dependency on 1/ε (the fourth function in the Ackermann
Hierarchy, which is a tower of towers of exponents of height polynomial in 1/ε). In [2] it was shown,
using Szemeŕedi’s Regularity Lemma, that, for every fixed graphD, the propertyPD is also strongly
testable. This result was generalized to the case of directed graphs (digraphs) in [5], by first proving a
directed version of the regularity lemma. In the above two cases the query complexity is also huge, a
tower of 2’s of height polynomial in 1/ε.

As in many cases, moving from graphs to hypergraphs has many unexpected difficulties. While for
graphs the strong testability ofPD andP∗D follows quite easily from an appropriate regularity lemma
[3, 27], until very recently there was no strong enough regularity lemma suitable for proving thatPD and
P∗D are strongly testable for anyk-graphD. The only results fork-graphs were obtained by Frankl and
Rödl [12], who (implicitly) showed that, for any 3-graphD, propertyPD is strongly testable (see also
[19]) and by Kohayakawa, Nagle and Rödl in [17], where it was shown that, for any 3-graphD, property
P∗D is strongly testable. Recent works of Gowers [15] and independently of Nagle, Rödl, Schacht and
Skokan [22, 20] suggest that a powerful new hypergraph regularity lemma implies thatP∗D andPD are
both strongly testable for anyk-graphD, for arbitrary value ofk. It should be noted, however, that the
upper bounds that these new techniques may guarantee, for testingk-uniform hypergraphs, will probably
belong to thekth level of the Ackermann Hierarchy.

For somek-graphs, however, there are obviously much more efficient property-testers than the ones
guaranteed by the general results described above. For example, for anyk, if D is a singlek-edge, then
there is obviously a one-sided-error property-tester forPD = P∗D, whose query complexity isΘ(1/ε).
We simply sampleΘ(1/ε) vertices, and check if they span an edge. A natural question is, therefore,
to decide for whichk-graphsD there is a one-sided-error property-tester forPD or P∗D whose query
complexity is bounded by apolynomialof 1/ε. We introduce the following definition:

Definition 1.1 (Easily Testable).A propertyP is easily testableif there is a one-sided-error property-
tester forP whose query complexity is polynomial in 1/ε.

In [1] it is shown that for an undirected graphD, propertyPD is easily testable if and only ifD is
bipartite. One of the main results of [5] is a precise characterization of all the directed graphsD for
whichPD is easily testable. In [4] it is shown that for any graphD other than the paths of length 1, 2, 3
(which have 2,3,4 vertices respectively), the cycle of length 4, and their complements,P∗D is not easily
testable. A similar result was also proved for directed graphs. Fork > 2, the only result in the direction
of classifying thek-graphs for whichPD andP∗D are easily testable was obtained in [17], where it was
shown that for anyk, the completek-graph onk+ 1 vertices is not easily testable. A natural step is
therefore to classify all thek-graphsD for whichP∗D andPD are easily testable.
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1.3 The new results

Our first two results concern testingP∗D. In what follows we denote byD3,2 the unique 3-graph on
4-vertices that has 2 edges.

Theorem 1.2. For any k≥ 3 and any k-graph D other than a single k-edge and D3,2, there exists a
constant c= c(D) > 0 such that the query-complexity of any one-sided-errorε-tester forP∗D is at least(

1
ε

)clog(1/ε)

.

As noted above, for anyk, there is an obvious one-sided-error property-tester for the case ofD being
a singlek-edge, whose query complexity isΘ(1/ε). We therefore get thatTheorem 1.2gives a complete
characterization of thek-graphsD for whichP∗D is easily testable, besides the case ofD3,2.

Our second result states that for largek we can significantly improve the lower bounds for testing
P∗D, for almost allk-graphs.

Theorem 1.3. For any k there is a constant r(k) such that, for any k-graph D on at least r(k) vertices,
there is a constant c= c(D) > 0 such that any one-sided-error property-tester for testingP∗D has query
complexity at least (

1
ε

)c(log1/ε)blogkc

.

In fact, the lower bounds in the above theorem apply also to somek-graphs on less thanr(k) vertices,
amongst them all thek-graphs that containFk, which is the completek-graph onk+ 1 vertices. As a
special case, we thus improve the lower bound for the case ofFk obtained in [17], which was similar
to the lower bound inTheorem 1.2. Moreover, our technique supplies a slightly inferior lower bound
(namely, with exponentblogdk/2+ 1ec instead ofblogkc) for any k-graphD on more thank vertices
(see discussion following the proof ofTheorem 1.3in Section5.2). Note that the bounds ofTheorem 1.3
aresuper-polynomialin the bounds ofTheorem 1.2; thus for largek we obtain substantially better lower
bounds.

Our next two results concern testingPD. We first give an efficient one-sided-error property-tester
for anyk-partitek-graph. Recall that ak-graph isk-partite if its vertex set can be partitioned intok sets
such that each edge has precisely one vertex in each of the partition classes.

Theorem 1.4. (i) Let t1 ≤ . . .≤ tk, put t∗ = t1 · . . . · tk, and let D be any k-partite k-graph with partition
classes of sizes t1, . . . , tk. Then there is a one-sided-errorε-tester forPD with query complexity

O

(
1
ε

)t∗/tk

.

(ii) For any k-partite k-graph D on d vertices which contains|E| edges, the query complexity of any
one-sided-errorε-tester forPD is

Ω
(

1
ε

)|E|/d

.
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The upper bound in the above theorem improves the one obtained by [17] in which the exponent
wast∗. SeeSection7 for more details. Observe that whenD is the completek-partitek-graphKt,...,t ,
the exponent in the upper bound istk−1 while the one in the lower bound istk−1/k, which is quite close.
The proof of this theorem appears inSection7.

For the next result we need some definitions. Ahomomorphismfrom a k-graphD to a k-graph
K is a mappingϕ : V(D) → V(K) which maps edges to edges, namely, if(v1, . . . ,vk) ∈ E(D) then
(ϕ(v1), . . . ,ϕ(vk)) ∈ E(K).

Definition 1.5. (Core) Thecoreof a k-graphD is the smallest (in terms of edges)sub-hypergraph of
D, denotedK, for which there exists a homomorphism fromD to K. A k-graphD is called a core if it is
the core of itself.

We also need to define a generalization of cycles in graphs;

Definition 1.6. (Hyper-Cycle1) A k-graph ond vertices 1, . . . ,d is called ahyper-cycleif it contains
d−k+2 edgese1, . . . ,ed−k+2 and one can arrange its vertices on a cycle such that every edgeei contains
the vertices{i (mod d), . . . , i +k−1 (mod d)}.

Observe that fork = 2 the above definition boils down to the definition of a cycle. Also, a single
k-edge is not a hyper-cycle, as it contains 1< k−k+2 = 2 edges. The next theorem gives a sufficient
condition for inferring that for ak-graphD, propertyPD is not easily testable.

Theorem 1.7. If the core of a k-graph D contains a hyper-cycle, then there exists a constant c= c(D) > 0
such that the query-complexity of any one-sided-errorε-tester forPD is at least(

1
ε

)clog(1/ε)

.

Observe that the core of anyk-partitek-graph is a single edge, which does not satisfy the definition
of a hyper-cycle. It is important to note that thoughTheorem 1.7establishes that for a large family
of non-k-partitek-graphsD, propertyPD is not easily testable, it does not cover all the nonk-partite
k-graphs, as the core of some of them does not contain a hyper-cycle. However, fork = 2, Theorem 1.7
does cover all the non-bipartite graphs, as it is easy to see that the core of any non-bipartite graph must
contain a cycle, namely, one of the shortest odd cycles of the graph. As we have mentioned above, for
k = 2, this is precisely the definition of a hyper-cycle. Hence,Theorem 1.4andTheorem 1.7imply that
for k = 2, propertyPD is easily testable if and only ifD is bipartite, thus extending the result of [1],
where the characterization for graphs was first obtained. We finally mention that using the main ideas of
the proof ofTheorem 1.7one can slightly extend it by showing that it holds even if in the definition of
a hyper-cycle one only requires that the first two vertices ofei would bei (mod d), i + 1 (mod d) (its
other vertices lying in{1,2, . . . ,d}).

As the proof with this definition is more involved (mainly due to cumbersome notations), and still
does not cover all the cases of non-k-partitek-graphs, we preferred to give the proof of the slightly less
general case, which contains all the important ideas.

1In some papers on hypergraphs this object is called atight cycle.
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We have thus far considered only one-sided-error property-testers. A natural question is if there
arek-graphsD, for whichP∗D (or PD) is not easily testable, but can still be tested with two-sided error
and query complexity polynomial in 1/ε. We can (partially) rule out this possibility by showing that
the lower bounds ofTheorem 1.2, Theorem 1.3andTheorem 1.7can all be extended to the case of
two-sided-errorε-testers.

Theorem 1.8.The lower bounds ofTheorem 1.2, Theorem 1.3andTheorem 1.7hold for two-sided-error
ε-testers as well.

1.4 Techniques

Our main results in this paper,Theorem 1.2, Theorem 1.3and Theorem 1.7, are based on two new
constructions. All the previous results on testingPD andP∗D ([1, 5, 4, 17]) were based on constructions
of sets of integers which do not contain small subsets that satisfy a certainsingleequation. All these
constructions were based on Behrend’s construction [7] of a large set of integers containing no 3-term
arithmetic progression. In our case, however, we consider sets of integers that do not contain small
subsets that satisfy a certainset of equations. The key benefit of this consideration is that requiring
the set of integers to satisfy a set of equations, rather than a single one, allows us to construct much
denser sets than the ones used in previous papers. This benefit translates to significantly improved lower
bounds. The proof of this new construction appears inSection2. Some of the techniques we apply in
the proof of this result are motivated by the work of Laba and Lacey [18], where they reproved a result
of Rankin [21] by constructing large sets of integers withoutk-term arithmetic progressions. The ideas
used in our number-theoretic construction have been further applied in another recent paper [26].

Our second technical contribution is an algebraic construction of certain extremalk-graphs. The
goal of this construction is to resolve the main technical difficulty in the proof of the main results. The
main benefit of this construction is that it allows us to infer certain linear equations between the integers
that are used in the definition of thesek-graphs. In previous papers about testing subgraphs in graphs,
([1, 5, 4]) inferring these linear equations was trivial. This construction can be viewed as an extension of
a construction of Frankl and R̈odl [12] (which is an extension of the well known construction of Ruzsa
and Szemeŕedi [25]), but ours is far more complicated to analyze. It is also much more applicable than
the construction of [12], which, for example, can only be used to show that the completek-graph on
k+ 1 vertices is not easily testable and with a lower bound as inTheorem 1.2, rather than the one in
Theorem 1.3. Our new algebraic technique is applied inSection3 andSection6. The ideas used in the
algebraic construction of extremalk-graphs have been further applied in another recent paper [6].

1.5 Organization

In Section2 andSection3 we develop the main machinery needed to proveTheorem 1.2andTheo-
rem 1.3. In Section2 we describe a new number-theoretic construction. InSection3 we describe a new
algebraic construction of extremalk-graphs. InSection4 we prove two useful lemmas, which use the
constructions ofSection2 andSection3 in order to obtain the lower bounds ofTheorem 1.2andThe-
orem 1.3. The results ofSection2, Section3 andSection4 are essentially independent, and thus these
sections can be read independently. To further simplify the reading of these sections, each of them starts
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with a short subsection in which we state the important definitions and state the main results proved in
that section.

The proofs ofTheorem 1.2andTheorem 1.3, which follow quite easily by combining the main re-
sults ofSection2, Section3 andSection4, are given inSection5. In Section6 we apply our algebraic
technique again, this time to construct extremalk-graphs, which are a central tool in the proof ofTheo-
rem 1.7. The proof ofTheorem 1.7also appears inSection6. In Section7 we proveTheorem 1.4. As
the proof ofTheorem 1.8uses ideas similar to the ones used in [4] (in addition to the ideas of this paper)
we omit it. Section8 contains some concluding remarks and open problems.

Throughout this paper we assume, whenever this is needed, that the error parameterε is sufficiently
small, and that the number of verticesn of thek-graph considered is sufficiently large compared to 1/ε.
In order to simplify the presentation, we omit all floor and ceiling signs whenever these are not crucial,
and make no attempt to optimize the absolute constants. All the logarithms appearing in the paper are in
base 2.

2 Arithmetic Progressions and Linear Equations

2.1 The main results of this section

In this section we give our number-theoretic construction, which will be later used inSection5. We start
with some definitions.

Definition 2.1. ((k,h)-Gadget)Call a set ofk−2 linear equationsE = {e1, . . . ,ek−2} with integer coef-
ficients ink unknownsx1, . . . ,xk a (k,h)-gadgetif it satisfies the following properties:

1. Each of the unknownsx1, . . . ,xk appears in at least one of the equations.

2. For 1≤ t ≤ k−2 equationet is of the form

ptxi +qtx j = (pt +qt)x` ,

where 0< pt ,qt ≤ h andxi ,x j ,x` are distinct.

3. Equationse1 . . . ,ek−2 are linearly independent.

We say thatz1, . . . ,zk satisfy a(k,h)-gadgetE if they satisfy thek−2 equations ofE. Note that any
gadgetE has a trivial solutionx1 = . . . = xk.

Definition 2.2. ((k,h)-Gadget-Free)A set of integersZ, is called(k,h)-gadget-freeif there are nok
distinct integersz1, . . . ,zk ∈ Z that satisfy an arbitrary(k,h)-gadget.

Our main goal in this section is to prove the following theorem, which will be a key ingredient in
the lower-bounds forP∗D.

Theorem 2.3. For every h and k there is an integer c= c(k,h), such that for every n there is a(k+1,h)-
gadget-free subset Z⊂ [n] = {1,2, . . . ,n} of size at least

|Z| ≥ n

ec(logn)1/blog2kc . (2.1)
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As we have explained before, note that for largerk the above theorem guarantees the existence of
a substantially larger setZ. The special case of the above theorem, wherek = 2, was proved and used
in [9] and [4]. As the details of the proof ofTheorem 2.3will reveal, the main idea is to somehow
reduce the construction required to proveTheorem 2.3to a construction related to a notion very similar
to arithmetic progressions. The main idea of this reduction will be to show that integers satisfying the
linear equations of a gadget nearly form an arithmetic progression. Our notion of “near” arithmetic
progression is the following:

Definition 2.4. ((k,h)-Progression)A set of k integersz1 ≤ z2 ≤ . . . ≤ zk is said to form a(k,h)-
progressionif there are integersd,n2, . . . ,nk with ni ≤ h such that, for 2≤ i ≤ k, we have

zi = zi−1 +nid . (2.2)

In what follows we call the integersni thecoefficientsof the progression andd thedifference. Note
that a(k,h)-progression is “nearly” an arithmetic progressions in the sense that in an arithmetic pro-
gression one requiresn2 = . . . = nk = 1. Also, note that the differenced is analogous to the difference
between consecutive elements in an arithmetic progression. In other words, ak-term arithmetic progres-
sion is a(k,1)-progression of distinct elements. The following notion will be important for the proof of
Theorem 2.3:

Definition 2.5. (Nontrivial (k,h)-Progression)A (k,h)-progression is said to benontrivial if its ele-
ments are distinct. Thus, a(k,h)-progression is nontrivial iff the differenced as well as the coefficients
ni are all nonzero.

The proof ofTheorem 2.3appears in the following two subsections. In the first subsection we
show how to transform the problem from one that deals with linear equations and gadgets to an
analogous problem about(k,h)-progressions. We also show how the solution of the problem about
(k,h)-progressions impliesTheorem 2.3. In the second subsection we solve the problem about(k,h)-
progressions.

2.2 Gadgets and(k,h)-Progressions

We start this subsection by “reducing” gadgets to(k,h)-progressions. Formally, we want to show the
following

Lemma 2.6. For every k and h there is an integer c= c(k,h) such that if z1 < .. . < zk satisfy a(k,h)-
gadget then they form a nontrivial(k,c)-progression.

For the proof of the above proposition we need the following three claims. For the proof of the first
we need the following well-known result that follows from Cramer’s rule and the Hadamard Inequality
(see, e.g., [16]).

Lemma 2.7. Let Ψ be a set of p homogenous linear equations in q variables. If p< q and each of the
coefficients in these equations has absolute value at most r, thenΨ has anonzerosolution{α1, . . . ,αq},
where eachαi is an integerwith absolute value at most(r2p)p/2.
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Claim 2.8. If z1 < .. . < zk are positive integers, which satisfy a(k,h)-gadgetE, then for2≤ i ≤ k−1
there are positive integers ai ,bi ≤ (h2k)k/2 such that aizi−1 +bizi+1 = (ai +bi)zi .

Proof. As there is nothing to prove fork = 3, we assumek≥ 4. In order to simplify the notation, we
show that there are positive integersa,b≤ (h2k)k/2 such that

az1 +bz3 = (a+b)z2 . (2.3)

The otherk−3 cases are identical. We first substitutez1, . . . ,zk into the setE, and obtaink−2 linear
equations of the formptzi + qtzj = (pt + qt)zk. Henceforth, when we refer to equationet ∈ E we will
refer to the equation after we have substituted the integerszi into it. Our goal is simply to show that there
areα1, . . . ,αk−2 not all equal to zero, such that in the linear combinationC = α1e1 + . . .+αk−2ek−2 the
coefficients of the integersz4, . . . ,zk vanish. We first claim that this will give us (2.3). Indeed, note that
ase1, . . . ,ek−2 are by assumption linearly independent, it cannot be the case that all the coefficients of the
integerszi vanish. Also, as for each of the equations inE the sum of the coefficients on the left hand side
is equal to the coefficient on the right hand side, this must also hold forC, hence, it cannot be the case
that precisely one of coefficients ofz1,z2,z3 does not vanish. Similarly, if precisely two of coefficients
of z1,z2,z3 do not vanish, this would imply that they are equal, which contradicts our assumption that
z1 < .. . < zk. Finally as we assume that each of the integerszi appears at least once, we are guaranteed
to get (2.3).

In order to make sure that in a linear combination with coefficientsα1, . . . ,αk−2 the integersz4, . . . ,zk

vanish, we may writek− 3 homogenous linear equations, which require that. This is a set ofk− 3
homogenous equations ink−2 unknowns with coefficients bounded byh. Therefore, byLemma 2.7it
has a nonzero solution with integer coefficients of size at most(h2(k−2))k/2−1. This means that the
coefficients ofC are bounded by(k−3)(h2(k−2))k/2−1 ≤ (h2k)k/2, as needed.

Claim 2.9. Suppose z1,z2,z3,a,b are positive integers, such that z1 < z2 < z3 and a,b ≤ h. If the
following equation holds

az1 +bz3 = (a+b)z2 ,

then z1,z2,z3 form a nontrivial(3,h)-progression.

Proof. We show thatz1,z2,z3 form a(3,h)-progression. It will be a nontrivial(3,h)-progression because
we assume thatz1 < z2 < z3. We first assume thata andb are co-prime, as otherwise we can divide them
by their gcd, and obtain a new equationa′z1 + b′z3 = (a′ + b′)z2, with a′ < a,b′ < b. Rearranging the
equation we get thata(z2− z1) = b(z3− z2). As a andb are co-primed = (z3− z2)/a = (z2− z1)/b is
an integer. Thus, we can writez2 = z1 +bd andz3 = z2 +ad, and taken2 = b≤ h andn3 = a≤ h in the
definition of the(3,h)-progression.

Claim 2.10. Suppose z1 < z2 < .. . < zk are positive integers, such that for every2≤ i ≤ k−1 there are
integers ai ,bi ≤ h, such that

aizi−1 +bizi+1 = (ai +bi)zi

holds. Then z1,z2, . . . ,zk form a (nontrivial)(k,hk−2)-progression.
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Proof. As before, we show thatz1, . . . ,zk form a(k,hk−2)-progression. It will be a nontrivial(k,hk−2)-
progression because we assume thatz1 < z2 < .. . < zk. We proceed by induction onk. The base case
k = 3 follows fromClaim 2.9. Assuming the claim holds fork we prove it fork+1. By the induction
hypothesis, for 2≤ i ≤ k we can writezi = zi−1 +mit for some integert andmi ≤ hk−2. By assumption
akzk−1 +bkzk+1 = (ak +bk)zk. Rearranging this gives

zk+1−zk =
ak

bk
(zk−zk−1) . (2.4)

Putg = gcd(bk, t) (≤ h) andd = t/g, and observe that for 1≤ i ≤ k we can writezi = zi−1 +g ·mi ·d,
and thus takeni = mi ·g≤ hhk−2 = hk−1. As in Claim 2.9, we may assume thatak andbk are co-prime,
and conclude from (2.4) thatbk divideszk−zk−1 = mkt. We may thus write

zk+1 = zk +
akmkt

bk
= zk +

akmkg
bk

·d = zk +nk+1d .

As akg/bk ≤ ak ≤ h andmk ≤ hk−2, we havenk+1 ≤ hk−1, and the proof is complete.

Proof ofLemma 2.6. Immediate fromClaim 2.8andClaim 2.10.

Though we do not need this here, it is worth mentioning that the converse ofLemma 2.6is also true.
Indeed, ifz1, . . . ,zk form a(k,h)-progression, then for every 2≤ i ≤ k−1 we havezi = zi−1 +nid, and
zi+1 = zi +ni+1d. This implies that(ni +ni+1)zi = ni+1zi−1 +nizi+1. Hence,z1, . . . ,zk satisfy thek−2
linear equations(ni +ni+1)xi = ni+1xi−1+nixi+1 that are easily checked to satisfy the three requirements
of a (k,h)-gadget.

The proof ofTheorem 2.3will follow by combiningLemma 2.6and the following lemma.

Lemma 2.11. For every h and p≥ 2, there is an integer c= c(p,h) such that for every n there is a
subset Z⊂ [n] = {1,2, . . . ,n} of size at least

|Z| ≥ n

eclog1/p n
(2.5)

that does not contain any nontrivial(1+2p−1,h)-progression.

Proof ofTheorem 2.3. Let p be the largest integer satisfying 1+ 2p−1 ≤ 1+ k, namely,p = blog2kc.
Let c′ = c(k+1,h) be the constant appearing inLemma 2.6. Now, byLemma 2.11, there is a constant
c= c(p,c′), such that for everyn there is a subsetZ⊆ [n] of size as in (2.5), which contains no nontrivial
(1+ 2p−1,c′)-progression. By our choice ofp, this set contains no nontrivial(k+ 1,c′)-progression.
By Lemma 2.6, the setZ does not containk+1 distinct integers, which satisfy a(k+1,h)-gadget. As
p = blog2kc, the setZ satisfies the requirements ofTheorem 2.3.

It is easy to see that the elements of a(1+ 2p−1,h)-progression must be taken from an arithmetic
progression of length at mosth2p−1, whose difference is the integerd from the definition of the(1+
2p−1,h)-progression inDefinition 2.4. Thus, another way to look atLemma 2.11is as a construction of a
setZ with the following property: not only doesn’tZ contain arithmetic progressions of length 1+2p−1,
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but it does not even contain 1+ 2p−1 numbers out of some other not too large arithmetic progression,
whose other elements need not even belong toZ.

In order to proveLemma 2.11, we will first show that it holds for everyfixed set of coefficients
n2, . . . ,n1+2p−1. Namely, we show that there is a subset of[n] of the same size as in (2.5) that does not
contain any(1+2p−1,h)-progressionz1, . . . ,z1+2p−1 such thatzi = zi−1+nid for every 2≤ i ≤ 1+2p−1.
Note that the differenced may be arbitrary. To be precise, we want to show the following:

Lemma 2.12. For every fixed positive n2, . . . ,n1+2p−1 ≤ h there is an integer c= c(p,h) such that for
every n there is a subset Z⊂ [n] = {1,2, . . . ,n} of size at least

|Z| ≥ n

eclog1/p n
, (2.6)

that does not contain any nontrivial(1+2p−1,h)-progression with coefficients n2, . . . ,n2p−1.

The proof of this lemma appears in the next subsection. We first show how to deriveLemma 2.11
from the above lemma.

Proof ofLemma 2.11. For every sets, of positive 2p−1 integersn2, . . . ,n1+2p−1 ≤ h, let Zs be the
largest subset of[n], which does not contain any nontrivial(1+ 2p−1,h)-progression with coefficients

n2, . . . ,n1+2p−1. By Lemma 2.12we have that for anys the setZs has size at leastn/eclog1/p n, wherec
depends only onp andh. Denote the number of setss by m, and observe that as the coefficients in each
sets are bounded byh there are less than 2ph choices for the sets.

Uniformly at random pickm integerst1, . . . , tm from {−n, . . . ,n}, and consider the set

Z =
m⋂

i=1

(Zi + ti)

(where,Z + t denotes the translate ofZ by t, i.e. Z + t = {z+ t : z∈ Z}). ClearlyZ contains no(1+
2p−1,h)-progressions with arbitrary coefficients bounded byh. For every integerz∈ [n] the probability

that it belongs toZi + ti is 1/eclog1/p n, hence the probability that it belongs to all the setsZi + ti , and

therefore also toZ, is (1/eclog1/p n)m = 1/ec′ log1/p n for a possibly largerc′ that still depends only onp

andh. By linearity of expectation we get that the expected size ofZ is n/ec′ log1/p n, and therefore there is
some choice oft1, . . . , tm for which the resulting setZ is at least this large.

2.3 Large sets of integers without a given(k,h)-Progression

In this subsection we apply the method of [18] in order to proveLemma 2.12. The proof will require
some more definitions. We first need to further extend the notion of arithmetic progressions as follows:

Definition 2.13 ((p, t,h)-Progression). A set of p integersz0, . . . ,zp−1 is said to form a(p, t,h)-
progressionif there aret + 1 integersd0, . . . ,dt and integersn0 = 0,n1, . . . ,np−1 ≤ h such that for
0≤ i ≤ p−1

zi = d0 +ni ·d1 +n2
i ·d2 + . . .+nt

i ·dt . (2.7)
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To avoid confusion, note that by definitiond0 = z0, thus, we did not really needd0 andn0, which is
fixed to be zero, in the above definition. However, this way of defining the integers of the set will make
subsequent notation more compact. Note that unlike the definition of(k,h)-progressions inDefini-
tion 2.4, here we define each element of the sequence with respect to the smallest numberz0 = d0, rather
than the preceding one as inDefinition 2.4. Therefore, a(p,h)-progression as defined inDefinition 2.4
is also a(p,1,h(p−1))-progression as defined in (2.7).

Definition 2.14 (Nontrivial (p, t,h)-progression). We call a(p, t,h)-progressionnontrivial if at least
one ofd1, . . . ,dt is nonzero andn0, . . . ,np−1 are distinct.

Definition 2.15 (Rs(p, t,n)). For a setsof p distinct integersn0 = 0,n1 . . . ,np−1≤ h, defineRs(p, t,n) to
be the largest possible size of a subset of[n] which does not contain any nontrivial(p, t,h)-progression
whose coefficients are the integers ofs.

The proof ofLemma 2.12will follow by combining the following two claims.

Claim 2.16. For every set s, of2t +1 distinct integers bounded by h, there is an integer c= c(t,h), such
that

Rs(2t +1, t,n)≥ n

ec
√

logn
. (2.8)

Claim 2.17. For every set s, of p distinct integers bounded by h, there is an integer c= c(p,h), such that
if n = gb and p≥ t +1, then

Rs(p, t,n)≥ n·Rs(p,2t,g2b)
cbg2b

. (2.9)

Proof ofLemma 2.12. As we have noted above, a(p,h)-progression as defined inDefinition 2.4is also
a (p,1,h(p−1))-progression as defined in (2.7). Hence, we can proveLemma 2.12by showing that for
every sets, of distinct2 coefficientsn0 = 0,n1, . . . ,n2p−1 ≤ h2p−1 we have

Rs(1+2p−1,1,n)≥ n

eclog1/p n
. (2.10)

Consider any sets, of distinct integers bounded byh2p−1. Given integersn and p, we prove by
induction oǹ that for every 2≤ `≤ p there is a constantc = c(p,h), such that

Rs(1+2p−1,2p−`,n)≥ n

ec(logn)1/`
. (2.11)

The casè = 2 follows fromClaim 2.16with t = 2p−2. Assuming the claim holds for̀we prove it
for `+1. Setb = (logn)1/(`+1), and letg satisfyn = gb, namelyg = e(logn)1−1/(`+1)

. A short calculation
shows that in this case

(logg2b)1/` ≤ c(logn)1/(`+1) , (2.12)

2The reader should recall that for a(p, t,h)-progressions to be nontrivial its coefficients should be distinct. Whent = 1 this
guarantees that this nontrivial(p,1,h)-progression is also a nontrivial(p,h)-progression.
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wherec depends only onp. We get that

R(1+2p−1,2p−`−1,n)≥ n·R(1+2p−1,2p−`,g2b)
cbg2b

≥ n
cbg2b

· g2b

ec(logg2b)1/`
≥ n

cbec(logn)1/(`+1) ≥
n

ec(logn)1/(`+1) ,

where the first inequality follows fromClaim 2.17, the second from the induction hypothesis in (2.11)
with n = g2b, the third from (2.12), and the last from our choice ofb and the fact thatc depends only
on p andh. Also, note that by the reasoning we used to derive each of these inequalities, all the above
constants depend only onp and h (we called all of themc in order to simplify the notation). This
completes the proof of (2.11). We now obtain (2.10) by setting̀ = p in (2.11).

We now turn to proveClaim 2.16andClaim 2.17, which will require (yet again) several additional
definitions. Given a set of integersSwe denote byS+ r the translateof Sby r, that is,S+ r = {x+ r :
x∈ S}. Note, that ifSdoes not contain any nontrivial(p, t,h)-progression than so does any translate of
S. For reasons that will soon become clear, we prefer to proveClaim 2.16andClaim 2.17with respect
to the set of integers{−n/2, . . . ,n/2} rather than[n] = {1, . . . ,n}. We also consider representations of
integers from{−n/2, . . . ,n/2} in baseg, whereg will depend onn and will be much smaller thann. If
n = gb we define, for an integerc≥ 2,

Qc = {x∈ Z : x =
b−1

∑
i=0

xi ·gi ,−g/c≤ xi ≤ g/c} ,

namely, all the integers whose “digits” in baseg belong to−g/c, . . . ,g/c. As Qc ⊆ {−n/2, . . . ,n/2}
we may and will construct our sought after sets from integers belonging toQc for an appropriate large
enough constantc. Note, that somewhat unconventionally, we allow for negative digits. This repre-
sentation, however, is well-defined in the sense that givenx ∈ Qc, there are unique integers−g/c≤
x0, . . . ,xb−1≤ g/c such thatx= ∑b−1

i=0 xi ·gi . Given an integerx∈Qc we will denote byx= (x0, . . . ,xb−1)
the uniqueb dimensional vector inZb such thatx = ∑b−1

i=0 xi · gi . We will also denote‖x‖2 = ‖x‖2 =
∑b−1

i=0 x2
i . Our argument will critically rely on the observation that ifc is sufficiently large then addi-

tion, and more generally linear combinations with small coefficients, of numbers fromQc is equivalent
to linear combinations of their corresponding vectors. For example, observe that ifx,y,z∈ Q2, then
x+ y = z if and only if x+ y = z. The reason for that is simply that there is no carry in the baseg
addition of the number. More generally, ifc is sufficiently large with respect to integersα1, . . . ,αt , then
for x,x1, . . . ,xt ∈Qc,

x =
t

∑
i=1

αi ·xi ⇐⇒ x =
t

∑
i=1

αi ·xi . (2.13)

Also, note that ifc is sufficiently large with respect to integersα1, . . . ,αt , then forx1, . . . ,xt ∈Qc,

x =
t

∑
i=1

αi ·xi ∈Qc′ , (2.14)
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for another (possibly smaller) constantc′. It should be noted that had we chosen to work with the set[n]
rather than−n/2, . . . ,n/2 and represented integers using positive digits, then (2.13) and (2.14) would
not necessarily hold for negative coefficients. The reason is that the difference of two numbers with
small digits may contain very large digits. As we also allow for negative digits, the difference also
contains small digits. Finally, given integersp1, . . . , pt we denote byV(p1, . . . , pt) the Vandermonde
matrix satisfying for 1≤ i, j ≤ t, Vi, j = p j

i .

Proof ofClaim 2.16. Consider any setsof 2t +1 distinct integersn0 = 0,n1, . . . ,n2t ≤ h. For an integer
r defineSr = {x∈Qc : ‖x‖2 = r}. We claim that ifc is large enough in terms oft andh, thenSr contains
no nontrivial(2t +1, t,h)-progression with coefficients taken froms. Suppose to the contrary that there
are such 2t +1 integersz0,z1, . . . ,z2t . By (2.7) we have that for 0≤ i ≤ 2t

zi = d0 +ni ·d1 +n2
i ·d2 + . . .+nt

i ·dt , (2.15)

whered0 = z0,d1, . . . ,dt are arbitrary integers. Recall, that for this set to be nontrivial at least one
of d1, . . . ,dt must be nonzero (the integersni ∈ s are already assumed to be distinct). Denote byD the
determinant of the Vandermonde matrixV =V(n0, . . . ,nt), and for 0≤ i ≤ t denote byDi the determinant
of the matrix obtained fromV by replacing theith column with the column vector(z0, . . . ,zt). Observe,
that we can view the firstt + 1 equations in (2.15) as t + 1 equations in unknownsd0,d1, . . . ,dt . It
follows from Cramer’s rule that for 0≤ i ≤ t we haveDdi = Di . From the definition of the determinant
we can viewDi as a linear combination ofz0, . . . ,zt with integer coefficients bounded by a constant that
depends only ont andn0,n1, . . . ,nt . As n0,n1, . . . ,nt ≤ h, these coefficients are bounded by a constant
that depends only ont andh. Hence, by (2.13), if c was chosen large enough in terms oft andh then
for 0≤ i ≤ t, we get thatDdi (the b dimensional vector representingDdi) is a linear combination of
z0, . . . ,zt . Moreover, by (2.14) we may conclude thatDdi ∈Qc′ for somec′ < c. As by (2.15), z0, . . . ,z2t

are defined as linear combinations ofd0, . . . ,dt , we conclude that ifc is large enough (so thatc′ is large
enough), we can use (2.13) again to write (2.15) as

Dzi = Dd0 +ni ·Dd1 +n2
i ·Dd2 + . . .+nt

i ·Ddt . (2.16)

Define the following polynomial of degree 2t

P(x) :=
b−1

∑
q=0

(
(Dd0)q +(Dd1)q ·x+(Dd2)q ·x2 + . . .+(Ddt)q ·xt)2

,

where(Ddi)q denotes theqth entry of the vectorDdi . The key observation now is that by (2.16) we have
for 0≤ j ≤ 2t that P(n j) = ‖Dzj‖2 = D2‖zj‖2. Hence, as by assumption all the integerszi belong to
Sr , we have thatP is a polynomial of degree 2t with 2t + 1 distinct values (namelyn0,n1, . . . ,n2t) for
which it is equal toD2r. Therefore,P must be identical toD2r, which can be easily seen to imply that
(Ddi)q = 0 for all 0≤ q≤ d−1 and 1≤ i ≤ t. Hence,d1 = . . . = dt = 0, contradicting our assumption
that this is a nontrivial(2t +1, t,h)-progression. We conclude that ifc is large enough in terms ofh and
t thenSr contains no nontrivial(2t +1, t,h)-progression.

The claim now follows by averaging. As the absolute value of each digit inQc is bounded byg/c,
we haver ≤ b(g/c)2 ≤ bg2. Similarly, we conclude thatQc is of size(2g/c)b > (g/c)b. As the union of
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the setsSr covers the entire setQc there must be oner for which |Sr | ≥ (g/c)b/bg2 = n/bg2cb. Setting
b =

√
logn, and henceg = e

√
logn, gives (2.8) for an appropriate constantc = c(t,h).

Proof ofClaim 2.17. We again consider an arbitrary sets, of distinct integersn0 = 0,n1, . . . ,np−1 bounded
by h. As in the previous proof, we continue to writen= gb and represent numbers in baseg with possibly
negative digits. We will also construct our sought after set fromQc for a large enough constantc that will
only depend onp, t andh. Let D denote the determinant of the Vandermonde matrixV = V(n0, . . . ,nt).
Let R⊆ {1, . . . ,D2b(g/c)2} be a set of sizeRs(p,2t,D2b(g/c)2) that contains no nontrivial(p,2t,h)-
progression with coefficients froms, and recall that any translate ofR also satisfies this property. Let
L = {−D2b(g/c)2, . . . ,D2b(g/c)2}. For any` ∈ L define

A` = {x∈Qc : ‖Dx‖2 ∈ R+ `} .

We claim thatA` does not contain any nontrivial(p, t,h)-progression, with coefficients froms, provided
c in the definition ofQc is large enough. Suppose this is not the case, and letz0, . . . ,zp−1 be such a
nontrivial (p, t,h)-progression. Namely, suppose there ared0,d1, . . . ,dt not all equal to zero such that
zj = d0+∑t

i=1nt
jdt holds for 0≤ i ≤ p−1. As by assumptionp≥ t +1 we can still write thet +1 linear

equations as in (2.15). We can then argue as in the proof ofClaim 2.16that providedc is large enough,
we may conclude that for 0≤ j ≤ p−1 one can write

Dzi = Dd0 +ni ·Dd1 +n2
i ·Dd2 + . . .+nt

i ·Ddt . (2.17)

This implies, as inClaim 2.16, that for every 0≤ j ≤ p−1 we can write

‖Dzj‖= ‖Dzj‖2 =
b−1

∑
q=0

(
t

∑
i=0

(Ddi)q ·ni
j

)2

= d′0 +n j ·d′1 +n2
j ·d′2 + . . .+n2t

j ·d′2t , (2.18)

whered′0, . . . ,d
′
2t areidentical to all 0≤ j ≤ p−1. It is easy to see that asd0, . . . ,dt are by assumption

not all zero, then so ared′0, . . . ,d
′
2t . As d′0, . . . ,d

′
2t are common to all‖Dzj‖2, the right hand side of

(2.18) has the structure of a nontrivial(p,2t,h)-progression with coefficients froms. This means that
‖Dz0‖2, . . . ,‖Dzt−1‖2 form a nontrivial(p,2t,h)-progression with coefficients froms. This contradicts
our choice ofRandA`.

We conclude that for anỳ∈ L, the setA` contains no nontrivial(p, t,h)-progression with coefficients
from s. It is thus enough to show that for some` ∈ L the setA` is large enough. We do this again
by averaging. As the absolute value of the digits of numbers fromQc is bounded byg/c we have
0≤ ‖Dx‖2 ≤ D2b(g/c)2 for any x ∈ Qc. Therefore, for anyr ∈ R andx ∈ Qc there is aǹ ∈ L such
that‖Dx‖2 = r + `. Hence, for anyx∈ Qc there are|R| integers̀ ∈ L such thatx∈ A`. In other words,

∑|L|
`=1A` ≥ |R||Q|, and therefore for some choice of` ∈ L we have|A`| ≥ |R||Qc|/|L|. As |Qc|> (2g/c)b,

the proof follows as for somè∈ L we must have

|Ab| ≥
R(p,2t,h,D2bg2) · (2g/c)b

D2b(g/c)2 ≥ R(p,2t,h,bg2) ·gb

D2cbbg2 ≥ n
R(p,2t,h,bg2)

cbbg2 , (2.19)

where we used the fact that by definitionn= gb andD is bounded by a function oft andh only, therefore,
we can use a slightly larger constantc to “absorb”D2.
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3 Linear Equations and Extremal Hypergraphs

3.1 The main results of this section

In this section we describe the first algebraic construction of extremalk-graphs, which will play an
important role in the proofs ofTheorem 1.2andTheorem 1.3about testingP∗D in Section5. The second
construction, related toPD andTheorem 1.7, appears inSection6. The following definition will be key
for what follows:

Definition 3.1 (Tk). Let Tk denote the family ofk-graphs onk+1 vertices, which containat leastthree
edges.

Let mbe an integer,T a member ofTk, andZ an arbitrary subset of[m]. Let alsoPd = {p1, . . . , pk+1}
be a set ofk+ 1 distinct integers bounded byd (thus d > k). Consider the following definition of
a k-graphS= S(m,Z,T,Pd): The vertex set ofS consists ofk+ 1 pairwise disjoint sets of vertices
V1, . . . ,Vk+1, where, with a slight abuse of notation, we think of each of these sets as being the set of
integers 1, . . . ,dkm. Define

E(z0,z1, . . . ,zk−1, p) = z0 + p·z1 + p2 ·z2 + p3 ·z3 + . . .+ pk−1 ·zk−1 . (3.1)

We define the edge set ofS by specifying the edge sets of|Z|k copies ofT that we put inS. In what
follows we refer to thek+ 1 vertices ofT as integers in{1, . . . ,k+ 1}. For every set of (not nec-
essarily distinct) integersz0, . . . ,zk−1 ∈ Z, we add toS a copy ofT that is spanned by the vertices
v1 ∈V1, . . . ,vk+1 ∈Vk+1, where for 1≤ i ≤ k+1 we choosevi = E(z0, . . . ,zk−1, pi). In order to specify
the edges of this copy, we simply regard the verticesv1, . . . ,vk+1 as if they were the vertices 1, . . . ,k+1
of a regular copy ofT and put in the corresponding edges. Namely, for every edge(t1, . . . , tk) ∈ E(T),
we add toSan edge that contains the vertices

E(z0, . . . ,zk−1, pt1) ∈Vt1, E(z0, . . . ,zk−1, pt2) ∈Vt2, . . . ,E(z0, . . . ,zk−1, ptk) ∈Vtk .

In what follows we denote byC(z0, . . . ,zk−1), the copy ofT defined using the integersz0, . . . ,zk−1. Note,
that each of these|Z|k copies ofD has precisely one vertex in each of the setsV1, . . . ,Vk+1. Note also,
that for everyz0, . . . ,zk−1 andpi , the functionE satisfies

1≤ E(z0, . . . ,zk−1, pi)≤ kdk−1m≤ dkm ,

thus the vertices “fit” into the setsV1, . . . ,Vk+1. The reader should also observe that we treat the set of
integersPd, as anorderedset, as when choosing the vertex fromVi we use the integerpi ∈ Pd. Our first
goal in this section is to prove the following lemma.

Lemma 3.2. (The Key Lemma) Let T be a member ofTk, m an arbitrary integer, Z a subset of[m]
and Pd a set of k+ 1 distinct integers bounded by d. Define S= S(m,Z,T,Pd), and suppose E1,E2,E3

are three edges that belong to a copy of T in S. If E1 ∈ C(a0, . . . ,ak−1), E2 ∈ C(b0, . . . ,bk−1) and
E3 ∈C(c0, . . . ,ck−1), and if ai ≤ ci ≤ bi for some i,0≤ i ≤ k−1, then either ai = bi = ci or there are
positive integersβ1,β2 ≤ d3d2

such that

β1ai +β2bi = (β1 +β2)ci .
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Using the above lemma, we will construct the following extremalk-graph, which will be a key
ingredient in the lower bounds ofTheorem 1.2andTheorem 1.3.

Lemma 3.3. For every fixed k-graph D on d vertices that contains a copy of T∈ Tk with r ≥ 3 edges,
an integer m and a(r,d3d2

)-gadget-free set Z⊂ [m/dk+2], there is a k-graph F on m vertices with the
following properties:

1. F contains|Z|k induced copies of D, which are singled out from the rest of the copies of D and are
called theessential copiesof D in F.

2. Each pair of these essential copies share at most k−1 common vertices.

3. Every copy of T belongs to one of the essential copies of D.

It is important to note that we do not claim thatF does not contain any copies ofD other than the
|Z|k essential copies, nor will we claim so later on in this section. As the statement of the above lemma
is rather technical, the reader can find inSection3.3a short intuitive explanation of it.

3.2 Proof ofLemma 3.2

The main idea of the proof is very simple; asT has onlyk+ 1 vertices, the 3 edges spanned by these
vertices must have many common vertices. As the vertices of each set were chosen using the function
E defined in (3.1), we get from each vertex that is common to, say,E1 andE2, a linear equation that
relates the integersa0, . . . ,ak−1, which were used to defineE1 and the integersb0, . . . ,bk−1, which were
used to defineE2. We then show that for everyi eitherai = bi = ci or the linear equations induced by
the intersections of the edges are “reach” enough to enable us to extract a linear equation of the form
β1ai +β2bi = (β1 +β2)ci .

Let E1, E2 andE3 be three edges that belong to a copy of a member ofT ∈ Tk. AsT hask+1 vertices
and anyk-graph onk+1 vertices that contains at least 3 edges is a core (recallDefinition 1.5), thek+1
vertices must belong to distinct setsVi . Call these verticesv1 ∈ V1, . . . ,vk+1 ∈ Vk+1. Assume, without
loss of generality, thatE1 = {v1, . . . ,vk+1}\vk+1, E2 = {v1, . . . ,vk+1}\vk andE3 = {v1, . . . ,vk+1}\vk−1.
Recall, that every edge inS belongs to one of the copies ofT, defined using somek integers fromZ.
SupposeE1 ∈ C(a0, . . . ,ak−1), E2 ∈ C(b0, . . . ,bk−1), andE3 ∈ C(c0, . . . ,ck−1). As v1 ∈ V1, . . . ,vk−1 ∈
Vk−1, are common to bothE1 andE2 we conclude that for everyi ∈ [k+ 1] \ {k,k+ 1}, the following
equation holds:

E(a0, . . . ,ak−1, pi) = vi = E(b0, . . . ,bk−1, pi) .

As v1 ∈ V1, . . . ,vk−2 ∈ Vk−2,vk ∈ Vk, are common to bothE1 and E3 we conclude that for everyi ∈
[k+1]\{k−1,k+1}, the following equation holds:

E(a0, . . . ,ak−1, pi) = vi = E(c0, . . . ,ck−1, pi) .

We could have writtenk−1 equations for the common vertices ofE2 andE3, however, all but one of
them follow from the previous equations. The only independent equation is due tovk+1:

E(b0, . . . ,bk−1, pk+1) = vk+1 = E(c0, . . . ,ck−1, pk+1) .
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We get a set of 2k− 1 equations in 3k unknowns,a0, . . . ,ak−1, b0, . . . ,bk−1 andc0, . . . ,ck−1. In order
to simplify the rest of this subsection, we substitute the definition ofE from (3.1) and write our set of
equations as follows:

a0 + p1a1 + p2
1a2 + . . .+ pk−1

1 ak−1 = b0 + p1b1 + p2
1b2 + . . .+ pk−1

1 bk−1

a0 + p2a1 + p2
2a2 + . . .+ pk−1

2 ak−1 = b0 + p2b1 + p2
2b2 + . . .+ pk−1

2 bk−1

...

a0 + pk−1a1 + p2
k−1a2 + . . .+ pk−1

k−1ak−1 = b0 + pk−1b1 + p2
k−1b2 + . . .+ pk−1

k−1bk−1

a0 + p1a1 + p2
1a2 + . . .+ pk−1

1 ak−1 = c0 + p1c1 + p2
1c2 + . . .+ pk−1

1 ck−1

a0 + p2a1 + p2
2a2 + . . .+ pk−1

2 ak−1 = c0 + p2c1 + p2
2c2 + . . .+ pk−1

2 ck−1

...

a0 + pk−2a1 + p2
k−2a2 + . . .+ pk−1

k−2ak−1 = c0 + pk−2c1 + p2
k−2c2 + . . .+ pk−1

k−2ck−1

a0 + pka1 + p2
ka2 + . . .+ pk−1

k ak−1 = c0 + pkc1 + p2
kc2 + . . .+ pk−1

k ck−1

b0 + pk+1b1 + p2
k+1b2 + . . .+ pk−1

k+1bk−1 = c0 + pk+1c1 + p2
k+1c2 + . . .+ pk−1

k+1ck−1

In what follows we denote byΦ the above set of equations. The main idea of the proof will be to
show that eithera0 = b0 = c0 or there is a linear combination ofΦ with integer coefficientsα1, . . . ,α2k−1,
which results in the required linear equation relatinga0,b0 andc0. The other cases relatingai ,bi ,ci with
i > 0 are completely identical. The main idea is to find a linear combination in which for 1≤ i ≤ k−1
the coefficients ofai ,bi andci vanish. To this end, we introduce a set of equations whose solution will be
our desired integersαi . ObservingΦ, we see that eachai appears on the left hand side of the first 2k−2
equations. Thus, in order for the coefficient ofai to vanish in a linear combination ofΦ with coefficients
α1, . . . ,α2k−1, the following equation must hold

Ai : α1 · pi
1 +α2 · pi

2 + . . .+α2k−3 · pi
k−2 +α2k−2 · pi

k = 0 .

Eachbi appears only on the right hand side of the firstk−1 equations and on the left hand side of the
last equation. Therefore, in order for the coefficient ofbi to vanish the following equation must hold

Bi : 1 · pi
1 +α2 · pi

2 + . . .+αk−1 · pi
k−1−α2k−1 · pi

k+1 = 0 .

Finally, eachci appears only on the right hand side of the lastk−1 equations. Hence, in order for the
coefficient ofci to vanish the following equation must hold

Ci : k · pi
1 +αk+1 · pi

2 + . . .+α2k−3 · pi
k−2 +α2k−2 · pi

k +α2k−1 · pi
k+1 = 0 .

Observe, that we can write the analogous linear equationsA0,B0 andC0 that will require the co-
efficients ofa0,b0 andc0 to vanish. Though we apparently don’t need these equations, they will be
useful for the proof. In what follows we denote byϒ the set of equationsA1, . . . ,Ak−1, B1, . . . ,Bk−1,
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and C1, . . . ,Ck−1. The setϒ consists of 3k− 3 homogenous linear equations in 2k− 1 unknowns
α1, . . . ,α2k−1. Observe, however, that for 1≤ i ≤ k−1,

Ai = Bi +Ci .

Therefore,ϒ is equivalent to a set of 3k−3−(k−1) = 2k−2 linear homogenous equations in 2k−1 un-
knowns, which consists of equationsBi ,Ci . Observe also, that each of the coefficients inϒ has absolute
value at mostdk (recall that 1≤ p1, . . . , pk+1 ≤ d). By Lemma 2.7, we are thus guaranteed that there are
integersα1, . . . ,α2k−1 not all equal to zero, whose absolute values are at most(d2k(2k−2))k−1 ≤ d2d2

,
such that in a linear combination of the above equations the coefficients of all the variables buta0,b0,c0

vanish. We now claim that in such a combination either the coefficient ofb0 or the coefficient ofc0 does
not vanish. An important observation is that as the integersp1, . . . , pk+1 are distinct, thek linear equa-
tionsB0, . . . ,Bk−1 that require the coefficients ofb0, . . . ,bk−1 to vanish are linearly independent. Hence,
their only solution isα1 = 0, . . . ,αk−1 = 0,α2k−1 = 0. Similarly, thek linear equationsC0, . . . ,Ck−1 that
require the coefficients ofc0, . . . ,ck1 to vanish are linearly independent. Hence, their only solution is
αk = 0, . . . ,α2k−1 = 0. Thus, if the coefficients ofb0 andc0 vanish we may conclude that we must have
used a linear combination withα1 = . . . = α2k−1 = 0, which contradicts our choice.

Note, that as in each of the equations ofΦ the sum of the coefficients on the right hand side is equal
to the sum of the coefficients on the left hand side, this property must also hold in a linear combination
of Φ. Hence, there is no linear combination in which the coefficient of precisely one ofa0,b0,c0 does
not vanish. It also follows that if the coefficients of precisely two ofa0,b0,c0 do not vanish, then they
must be equal. However, if for examplea0 = b0, then we can “replace”b0 with a0 in the last equation
of Φ, and use the lastk equations ofΦ to infer that for 1≤ i ≤ k−1 we haveai = ci . We would thus get
thata0 = b0 = c0, which satisfies the requirement of the lemma. The other two cases are similar. As in
the previous paragraph we have ruled out the possibility that the coefficients ofa0,b0 andc0 vanish, the
remaining possibility is that the coefficientsa0,b0 andc0 do not vanish. In this case, we can use again
the fact that in the resultant equation the sums of the coefficients in each side are equal to infer that we
must get the required equation. Finally, as the coefficientsαi are bounded byd2d2

, the coefficients in the
linear combination are bounded by(2k−1)d2d2

< d3d2
.

3.3 Intuition for Lemma 3.3

We give some explanation as to why, or more preciselywhen, Lemma 3.3is not trivial. Consider for
simplicity the case ofk = 2, that is, whenTk is simply a triangle, andD is aK4 (a clique of size 4). In
this case, the lemma says that we can construct a graph onm vertices that contains|Z|2 essential copies
of K4 that are pairwise edge disjoint, and such that each triangle in the graph belongs to one of these
copies ofK4. Note, that if|Z| = 1 this statement is trivial as we can simply take a single copy ofK4 in
order to construct such a graph. However, if|Z|= m1−o(1), the lemma claims that we can construct the
following nontrivial graph: It hasm vertices and|Z|2 = m2−o(1) essential copies ofK4 that are pairwise
edge disjoint, such that each triangle in the graph belongs to one of these copies ofK4. As eachK4

contains at most 4 triangles, this graph contains less thanm2 triangles. As any triangle appears in at
mostm copies ofK4 such a graph has at mostm3 copies ofK4. Note that any trivial such construction
(e.g. random) will contain roughlym4−o(1) copies ofK4. The fact that we can construct graphs that
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contain many induced copies of a graph, where each two copies have at most 1 common vertex (ork−1
vertices in the case ofk-graphs) while containing relatively few copies of it, will be crucial in the proofs
of Theorem 1.2andTheorem 1.3.

3.4 Proof ofLemma 3.3

We define ak-graphF , similar to the one used inLemma 3.2. The vertex set ofF consists ofd pairwise
disjoint sets of verticesV1, . . . ,Vd, where, with a slight abuse of notation, we think of each of these sets
as being the set of integers 1, . . . ,m/d. We define the edge set ofF by specifying the edge sets of|Z|k
copies ofD that we put inF . In what follows we refer to thed vertices ofD as integers in{1, . . . ,d}.

For every set of (not necessarily distinct) integersz0, . . . ,zk−1 ∈ Z, we add toF a copy ofD that is
spanned by the verticesv1 ∈ V1, . . . ,vd ∈ Vd, where for 1≤ i ≤ d we choosevi = E(z0, . . . ,zk−1, i). In
order to specify the edges of this copy, we simply regard the verticesv1, . . . ,vd as if they were the vertices
of a regular copy ofD and put in the corresponding edges. Namely, for every edge(p1, . . . , pk) ∈ E(T),
we put inF an edge that contains the vertices

E(z0, . . . ,zk−1, p1) ∈Vp1, E(z0, . . . ,zk−1, p2) ∈Vp2, . . . ,E(z0, . . . ,zk−1, pk) ∈Vpk .

In what follows we denote byC(z0, . . . ,zk−1), the copy ofD defined using the integersz0, . . . ,zk−1. This
defines|Z|k copies ofD. These|Z|k copies ofD will be the essential copies ofD in F in the statement
of the lemma (but we will still have to show that they are induced copies ofD in F). Observe, that any
essential copyD has precisely one vertex in each of the setsV1, . . . ,Vd. Note also, that asZ⊆ [m/dk+2],
for everyz0, . . . ,zk−1 and 1≤ i ≤ d, the functionE satisfies 1≤E(z0, . . . ,zk−1, i)≤ kdk−1m/dk+2≤m/d,
thus the vertices “fit” into the setsV1, . . . ,Vd.

We now turn to prove the assertions of the lemma. Letv1, . . . ,vk bek vertices that belong to one of
the essential copies ofD in F . As the vertices of an essential copy belong to different setsVi , there are
distinct integers 1≤ p1, . . . , pk ≤ d, such thatv1 ∈Vp1, . . . ,vk ∈Vpk. From the definitions ofF and the
functionE in (3.1), there arez0, . . . ,zk−1, such that the following equations hold:

z0 + p1z1 + p2
1z2 + . . .+ pk−1

1 zk−1 = E(z0, . . . ,zk−1, p1) = v1 ,

...

z0 + pkz1 + p2
kz2 + . . .+ pk−1

k zk−1 = E(z0, . . . ,zk−1, pk) = vk .

If we view the following equations as a set ofk linear equations with unknownsz0, . . . ,zk−1, they corre-
spond to the matrix equationAx= b, whereb = {v1, . . . ,vk}, x = {z0, . . . ,zk−1}, andAi, j = p j−1

i . As A
is an invertible Vandermonde matrix (here we use the fact that the integerspi are distinct), we conclude
that z0, . . . ,zk−1 are uniquely defined by this set of equations. Hence, they belong to precisely one of
the essential copies ofD, namely,C(z0, . . . ,zk−1). We have thus shown that each pair of essential copies
share at mostk−1 common vertices. AsF is ak-graph, the essential copies ofD are in particular edge
disjoint. As by definition, every edge inD belongs to one of the essential copies ofD, we conclude that
the essential copies ofD in F are in factinduced. We have thus proved items (1) and (2).

We now turn to prove item (3). Supposev1, . . . ,vk+1 arek+1 vertices that span a copy ofT, namely,
they spanr ≥ 3 edges. As any member ofTk contains at least 3 edges,T is a core (recallDefinition 1.5).
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Hence, there are distinctp1, . . . , pk+1 such thatv1 ∈Vp1, . . . ,vk+1 ∈Vpk+1. Suppose ther edges ofT are
e1 ∈C(z0,1, . . . ,zk−1,1), . . . ,er ∈C(z0,r , . . . ,zk−1,r). In order to show that each copy ofT belongs to one
of the essential copies ofD we may show that for 0≤ i ≤ k−1 we havezi,1 = . . . = zi,r . This will mean
that ther edges belong toC(z0, . . . ,zk−1). For ease of notation we show thatz1,1 = . . . = z1,r . The other
cases are completely identical.

An important observation at this point is that the sub-hypergraph ofF induced onVp1, . . . ,Vpk+1 is
preciselythe k-graphS defined inLemma 3.2with Pd = {p1, . . . , pk+1}. Consider any three distinct
integersj1, j2, j3 ∈ {1, . . . , r}, such thatz1, j1 ≤ z1, j2 ≤ z1, j3. By Lemma 3.2, eitherz1, j1 = z1, j2 = z1, j3 or
there are positive integersβ1,β2 ≤ d3d2

such that the following equation holds

β1z1, j1 +β2z1, j3 = (β1 +β2)z1, j2 .

Assume first that for some choice ofj1, j2, j3∈ {1, . . . , r} we havez1, j1 = z1, j2 = z1, j3 and assume for
simplicity that j1 = 1, j2 = 2, j3 = 3. Consider any other 4≤ j ≤ r and assume without loss of generality
thatz1,1 ≤ z1, j ≤ z1,2. By the above, eitherz1,1 = z1,2 = z1, j or there are positive integersβ1,β2 ≤ d3d2

such thatβ1z1,1 + β2z1,2 = (β1 + β2)z1, j . However, as by assumptionz1,1 = z1,2 andβ1,β2 > 0 we can
conclude that in this case we also havez1,1 = z1,2 = z1, j . We thus conclude that in this case we have
z1,1 = z1,2 = . . . = z1,r .

Assume now that none ofj1, j2, j3 ∈ {1, . . . , r} are such thatz1, j1 = z1, j2 = z1, j3. Suppose we rename
the integersz1,1, . . . ,z1,r such thatz1,1 ≤ . . .≤ z1,r . By Lemma 3.2, we have for every 2≤ i ≤ r−1 that
there are positive integersβi1,βi2 ≤ d3d2

such that

βi1z1,i−1 +βi2z1,i+1 = (βi1 +βi2)z1,i (3.2)

holds (note that by our ordering ofz1,1, . . . ,z1,r we satisfy the requirement ofLemma 3.2thatai ≤ ci ≤
bi). But this means thatz1,1, . . . ,z1,r satisfy the(r,d3d2

)-gadgetE = {e2, . . . ,er−1} where

ei := βi1xi−1 +βi2xi+1 = (βi1 +βi2)xi

(it is easy to verify that this is indeed a(r,d3d2
)-gadget). However, as by assumptionZ is (r,d3d2

)-gadget-
free, the integersz1,1, . . . ,z1,r cannot be distinct. Assume, without loss of generality, thatz1,1 = z1,2. As
z1,1,z1,2,z1,3 satisfy the linear equation given in (3.2) and as by assumptionz1,1 = z1,2 it must be the
case thatz1,3 = z1,1 = z1,2. This contradicts our assumption that there is no triple of equal integers
z1, j1,z1, j2,z1, j3.

4 Extremal Hypergraphs and Lower Bounds forP∗D

4.1 The main results of this section

Our main goal in this section is to prove the following lemma

Lemma 4.1. Let D be a fixed k-graph on d vertices, which contains a copy of T∈ Tk with r edges.
Suppose we can find, for every integer m, a(r,d3d2

)-gadget-free subset Z⊆ [m/dk+2] of size m/ f (m).
Then, for every small enoughε > 0, and every large enough integer n, there is a k-graph H on n
vertices that isε-far from being induced D-free, and yet contains only O(nd/q(ε)) copies of D, where
q(ε) = max{m : (1/ f (m))k ≥ ε}.
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As we explain shortly, our intention is to apply the above lemma with a setZ for which the function
f grows as slowly as possible.

We also need the following lemma, which follows from thecanonical graph property-testerof Gol-
dreich and Trevisan in [14] (see also [3]).

Lemma 4.2. Suppose there is a k-graph on n vertices that isε-far from satisfyingP∗D (or PD) and yet
contains O(nd/q(ε)) copies of D. Then the query complexity of any one-sided-error property-tester for
P∗D (or PD) is Ω(q(ε)1/d), where d is the size of D. In particular, if q(ε) is super-polynomial in1/ε,
then so is the query complexity of any one-sided-error property-tester forP∗D (or PD).

As is evident from the statement ofLemma 4.2, in order to obtain a high lower bound for testing
P∗D, one would want to apply it to ak-graphH that isε-far from satisfyingP∗D and containsO(nd/q(ε))
copies ofD with q growing as fast as possible. Inspecting the statement ofLemma 4.1we see that
it supplies such ak-graph, but in this case the functionf should grow as slow as possible (in some
senseq is f−1). Note, that one can use the output ofTheorem 2.3as an input toLemma 4.1. Finally,
requiring f in Lemma 4.1to grow slowly, means requiring the setZ in Theorem 2.3to be as large as
possible. Finally, observe that we can use the number-theoretic construction ofTheorem 2.3, which
supplies such a set of sizen/ f (n) with f being sub-polynomial. This will give a super-polynomialq,
and thus super-polynomial lower bounds, which are our ultimate goals. InSection5 we indeed apply
the above two lemmas, along withLemma 3.3and the number-theoretic construction ofTheorem 2.3.
In order to proveTheorem 1.2andTheorem 1.3. The reader can find further intuition forLemma 4.1in
the following subsection. The proofs ofLemma 4.1andLemma 4.2appear in the following subsections.

4.2 Intuition for Lemma 4.1

Going back to the discussion following the statement ofLemma 3.3we see that usingLemma 3.3with a
setZ of sizen1−o(1) gets us very close to the requirements ofLemma 4.2, with two important differences.
Returning to the example ofK4 from Section3.3, we see that on the one hand thek-graph ofLemma 3.3
contains at mostm3 copies ofK4 onmvertices, which is far better than then4/q(ε) copies onn vertices,
whichLemma 4.2expects to get3. On the other hand, however, the inputk-graph toLemma 4.2must be
ε-far from being inducedK4-free while thek-graph inLemma 3.3is onlym−o(1)-far from being induced
K4-free as it contains onlym2−o(1) copies ofK4. Thus,Lemma 4.1can be viewed as a bridge between
the extremal hypergraph construction ofLemma 3.3and the lower bounds that we can obtain using
Lemma 4.2.

4.3 Proof ofLemma 4.1

We start with a key definition used in the proof ofLemma 4.1:

Definition 4.3 (Blow-up). An s-blow-upof a k-graphT = (V(T),E(T)) on t vertices is thek-graph
obtained fromT by replacing each vertexvi ∈ V(T) by an independent setIi of sizes, and each edge
(vi1, . . . ,vik) ∈ E(T), by a completek-partitek-graph4 whose vertex classes areIi1, . . . , Iik.

3The reader should note that asK4 is complete there is no difference between having it as a subgraph or as an induced
subgraph. However, this lets us keep the “intuitive” example easy to explain.

4A completek-partitek-graph has as its vertex setk setsV1, . . . ,Vk, and its edge set is{{v1, . . . ,vk} : v1 ∈V1, . . . ,vk ∈Vk}.
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Note, that if we take ans-blow-up of ak-graphT, we get ak-graph onst vertices that containsst

induced copies ofT, where each vertex of the copy belongs to a different blow-up of a vertex from
T (simply pick one vertex from each independent set). We call these copies thespecial copiesof the
blow-up. As each set ofk vertices in the blow-up is contained in at mostst−k special copies ofT, it
follows that adding or removing an edge from thek-graph can destroy at mostst−k special copies of
T. We conclude that one must add or remove at leastst/st−k = sk edges from the blow-up in order to
destroy all its special copies ofT.

Proof ofLemma 4.1. Given a smallε > 0, define

m= q(ε) . (4.1)

Let Z⊆ [m/dk+2] be a(r,d3d2
)-gadget-free, and letF be the output ofLemma 3.3, givenD, T, mandZ.

Recall thatF hasm vertices. LetH be ans-blow-up ofF , where

s=
⌊

n
|V(F)|

⌋
=
⌊ n

m

⌋
. (4.2)

If necessary, add some more isolated vertices to make sure that the number of vertices ofH is precisely
n. Claim 4.4andClaim 4.6below complete the proof of this lemma.

Claim 4.4. The k-graph H defined in the proof ofLemma 4.1is ε-far from being induced D-free.

Proof. Consider two essential copies ofD in F , D1 andD2. By item (2) inLemma 3.3, D1 andD2 share
at mostk−1 verticesvi1, . . . ,vik−1 in F . It follows that their corresponding blow-ups inH will share at
mostk−1 independent setsIi1, . . . , Iik−1, which replace the verticesvi1, . . . ,vik−1 from F . Now, consider
the blow-ups ofD1 andD2 in H, denotedD1 andD2. As D1 andD2 share at mostk− 1 common
independent sets, and each of the special copies ofD in D1/D2 haspreciselyone vertex in each of the
independent sets that replaced the vertices ofF , we get that a special copy ofD in D1 and a special
copy of D in D2 share at mostk− 1 vertices. Thus, adding or removing an edge fromH, can either
destroy special copies ofD that belong toD1, or special copies ofD that belong toD2 (or not destroy
any induced copies at all). By item (1) inLemma 4.1each of the essential copies ofD in F is induced,
thus, as we explained above, in order to destroy all the special copies of ans-blow-up ofD, one needs
to add or remove at leastsk edges from the blow-up. As|Z|= m/ f (m) we have byLemma 3.3item (1)
thatF containsmk/ f k(m) essential copies ofD. Therefore,H containsmk/ f k(m) blow-ups of copies of
D. We may thus infer that one has to add or delete at least

skmk

f k(m)
=

nk

f k(m)
≥ εnk (4.3)

edges in order to turnH into an inducedD-freek-graph, where the inequality follows from our choice
of m in (4.1) and the definition ofq(ε). Thus,H is ε-far from being inducedD-free.

In what follows we denote byIv the independent set of vertices inH that replaced vertexv from F .
As H is a blow-up ofF it is clear that{v1 ∈ It1, . . . ,vk ∈ Itk} is an edge inH if and only if {t1, . . . , tk}
is an edge inF . We remind the reader that by assumptionD contains a copy ofT ∈ Tk, which contains
r ≥ 3 edges. We need the following simple claim:
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Claim 4.5. The number of copies of T in H is sk+1 times the number of copies of T in F.

Proof. Assumev1 ∈ It1, . . . ,vk+1 ∈ Itk+1 span a copy ofT in H. As T is a core the setsIt1, . . . , Itk+1 are all
distinct. AsH is a blow-up ofF we get thatt1, . . . , tk+1 span a copy ofT in F . We conclude that a copy
of T in H is obtained only by picking a single vertex from each one of thek+1 setsIt1, . . . , Itk+1 such that
t1, . . . , tk+1 span a copy ofT in F . As H is ans-blow-up ofF , we conclude that the number of copies of
T in H is preciselysk+1 times the number of copies ofT in F .

Claim 4.6. The k-graph H defined in the proof ofLemma 4.1has O(nd/q(ε)) copies of D.

Proof. Note, that asD contains at least one copy ofT, and each copy ofT belongs to at most
( n

d−k−1

)
≤

nd−k−1 copies ofD, it is enough to show thatH contains at mostnk+1/q(ε) copies (induced or not) of
T. By Claim 4.5, the number of copies ofT in H is preciselysk+1 times the number of copies ofT in F .
By item (3) inLemma 3.3each copy ofT belongs to one of the essential copies ofD. As each copy of
D can contain at most

( d
k+1

)
≤ dk+1 copies ofT, andF containsprecisely mk/ f k(m) essential copies of

D, we get thatH contains at most

dk+1 ·mk ·sk+1

f k(m)
=

dk+1 ·mk ·nk+1

f k(m) ·mk+1 ≤ dk+1 ·nk+1

m
= O(nk+1/q(ε)) (4.4)

copies ofT, where the first equality is due to our choice ofs in (4.2), and in the last equality we used the
definition ofm in (4.1).

4.4 Proof ofLemma 4.2

We need the following result of [14], mentioned already in [3].

Lemma 4.7. ([3],[14]) If there exists anε-tester for a graph property that makes q queries, then there
exists such anε-tester that makes its queries by uniformly and randomly choosing a set of2q vertices,
querying all their pairs and then accepting/rejecting according to the graph induced by the sample. In
particular, it is a non-adaptiveε-tester making

(2q
2

)
queries.

Restating the above, by (at most) squaring the query complexity, we can assume without loss of gen-
erality that a property-tester works by sampling a set of vertices of sizeq(ε,n) and accepting/rejecting
according to the graph spanned by the set. In [14] the authors measure the query complexity of a property
tester by counting the number of edge queries. As we measure query complexity by the number of ver-
tices sampled, assuming we always query all possible edges within the sample, we infer fromLemma 4.7
that we can simply assume that the property tester first samples a set of vertices, queries about all the
edges, and then proceeds to perform some other computation. Also, the proof ofLemma 4.7was de-
scribed in [14] for graphs, however, precisely the same argument carries over tok-graphs. We need the
following simple observations:

Claim 4.8. Suppose Q is a k-graph on q vertices containing no induced copy of some k-graph D. Then,
for any n> q there is a k-graph H on n vertices, which contains Q as an induced subgraph, and does
not contain D as an induced subgraph.
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Proof. It is clearly enough to show that there is such ak-graph onq+ 1 vertices. Letd denote the
number of vertices ofD. Suppose first thatD has no vertex of degree

(d−1
k−1

)
(i.e. a vertex that forms an

edge with all the other subsets ofk−1 vertices). In this case, if we add toQ a vertex and connect it to
all the

( q
k−1

)
sets ofk−1 vertices ofQ, we are guaranteed that the newk-graph spans no induced copy

of D. Suppose now thatD has no isolated vertex. In this case we add toQ an isolated vertex and thus
guarantee that the newk-graph spans no induced copy ofD. The only case left is thatD has an isolated
vertex and a vertex of degree

(d−1
k−1

)
, which is impossible.

By Theorem 4.7we can assume that a property-tester forP∗D works by inspecting a random subset
of vertices. The following claim shows that such a one-sided-error property-tester can reject an input
only if it finds an induced copy ofD in the sample of vertices.

Claim 4.9. Let D be a some k-graphs, and let A be a one-sided-error tester forP∗D with query complexity
q(ε,n). If for someε0 > 0 and n, after A samples a set of vertices of size q(ε0,n), the k-graph induced
by the sample is induced D-free, then A must accept the input.

Proof. Fix anyn andε0 > 0 and suppose that when we executeA on ak-graphH ′ of sizen with ε = ε0,
and the sample of vertices spans ak-graphQ (of sizeq(ε0,n)) that is inducedD-free, the algorithm still
rejects the input. ByClaim 4.8there is ak-graphH on n vertices that is inducedD-free and contains
an induced copy ofQ. Suppose we executeA on H with ε = ε0. As H andH ′ are of the same sizen,
when givenH as input the algorithm samples a set of vertices of sizeq(ε0,n) = |V(Q)|. As we assume
that when givenQ the algorithm rejects, we get that there is a nonzero probability thatA will reject H,
contradicting the assumption that it has one-sided error.

Proof ofLemma 4.2. We start with the proof ofP∗D. As the algorithm is a one-sided-error algorithm, we
get fromClaim 4.9that it can report thatH is not inducedD-free only if it finds an induced copy ofD
in it. Observe, that if the tester picks a random subset ofx vertices, and an inputk-graph contains only
O(nd/q(ε)) copies (induced or not) ofD, then the expected number of induced copies ofD spanned by
x is O(xd/q(ε)), which iso(1) unlessx = Ω(q(ε)1/d). By Markov’s inequality, unlessx = Ω(q(ε)1/d),
the tester finds an induced copy ofD with negligible probability.

The proof forPD is similar. What we need is a version ofClaim 4.8but with respect to non-induced
sub-hypergraphs. But here the proof is even simpler: If we have ak-graphQ on q vertices that has no
copy of ak-graphD, we can construct ak-graph onq+ 1 vertices that contains an induced copy ofQ
but no copy ofD, simply by adding an isolated vertex toQ. Note, that here we assume thatD has no
isolated vertices. Clearly when testingPD we may assume that this is the case, because ifD′ is obtained
from D by removing an isolated vertex, then anyk-graph on at least|V(D)| vertices, satisfiesPD′ iff it
satisfiesPD. Thus fork-graphs of size at least|V(D)| testingPD′ is equivalent to testingPD, hence it is
enough to prove a lower bound for one of them.

5 Proofs ofTheorem 1.2and Theorem 1.3

5.1 A lower bound for (almost) all k-graphs

In this section we apply the number-theoretic construction ofTheorem 2.3, the construction of the ex-
tremalk-graphs ofLemma 3.3as well asLemma 4.1andLemma 4.2in order to proveTheorem 1.2.
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We first need the following claim in which we denote byD the complement ofD, that is, ak-graph that
contains an edge if and only ifD does not. We also call ak-graphD, stronglyTk-free, if neitherD norD
contains a copy ofTk.

Claim 5.1. There are no stronglyT3-free 3-graphs on at least 7 vertices. For any k> 3, there are no
stronglyTk-free k-graphs on at least k+1 vertices.

Proof. The case ofk > 3 is simple. As in this case
(k+1

k

)
≥ 5, onanyset ofk+ 1 vertices eitherD or

D spans a copy ofTk. For the case ofk = 3, observe thatD is stronglyT3-free, if and only if each set
of 4 vertices spans precisely 2 edges. Fixing any set of 7 vertices, this set must span precisely

(7
4

)
2/4

edges, where we count the number of 4-sets, multiply by 2 as each 4-set by assumption spans 2 edges,
and divide by 4, because we count each edge 4 times. Since this is not an integer it is impossible. Thus,
onanyset of 7 vertices eitherD or D spans a copy ofT3.

Proof ofTheorem 1.2. Let D be a fixedk-graph ond vertices. A simple yet crucial observation is that
for everyk-graphD, testingP∗D is equivalent to testingP∗

D
. Note, that this relation does not hold for

testingPD. It follows that in order to prove a lower bound for testingP∗D, we may prove a lower bound
for testingP∗

D
. By Claim 5.1all thek-graphs in the statement ofTheorem 1.2(besides some 3-graphs

on 4,5 and 6 vertices. See comment below on how to deal with them) are not stronglyTk-free, hence we
may assume thatD contains a copy ofT ∈ Tk with at least 3 edges. ByTheorem 2.3(with k = 2 and

h = d3d2
), there is a(3,d3d2

)-gadget-free setZ⊆m/dk+2 of size(m/dk+2)/ec
√

log(m/dk+2) = m/ec
√

logm

for an appropriatec = c(d). This means that we can useLemma 4.1with f (m) = ec
√

logm. It is easy to
check that in this caseq(ε) in the statement ofLemma 4.1satisfies

q(ε)≥
(

1
ε

)c′ log1/ε

, (5.1)

for an appropriate constantc′ = c′(d). By Lemma 4.1we get ak-graph that isε-far from being induced
D-free, and contains onlyO(nd/q(ε)) copies ofD. By Lemma 4.2the query complexity of any one-
sided-error property-tester forP∗D can be bounded from below byq(ε)1/d, which is (5.1), with c′ replaced
by c′/d.

It is worth mentioning that there are stronglyT3-free 3-graphs on 4,5, and 6 vertices. For 4 vertices
there is a unique such 3-graph, which isD3,2 (which contains 2 edges) mentioned in the statement of
theTheorem 1.3. This is the onlyk-graph for which we do not know whetherP∗D is easily testable. For
5 vertices, it is easy to verify that the only stronglyT3-free 3-graph has the edges{(1,2,3), (2,3,4),
(3,4,5), (4,5,1), (5,1,2)}. This 3-graph is better understood if one considers the 5 vertices on a cycle,
and the edges as all triples consisting of three consecutive vertices on the cycle. In what follows we call
it D3,5. It is easy to check thatD3,5 is a hyper-cycle (seeDefinition 1.6), thus we can prove a version of
Lemma 4.1(namely, constructing ak-graph, which isε-far from beingD3,5-free and yet contains only
O(n5/(1/ε)clog1/ε) copies ofD3,5) that instead of usingLemma 3.3andTheorem 2.3, usesLemma 6.1
andLemma 6.7, which are proved below. The details are very similar. For 6 vertices there are also
some 3-graphs that are stronglyT3-free, however, every 5 vertices of such a 3-graph must span a copy
of D3,5 thus we can again use the same arguments as forD3,5 to prove that any such 3-graph is not easily
testable.
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5.2 The improved lower bound

Proof ofTheorem 1.3. Observing, as in the proof ofTheorem 1.2, that we may either prove a lower
bound forD or D, we recall that by Ramsey’s Theorem, for any integerk there is an integerr(k) such
that for anyk-graphD on at leastr(k) vertices, eitherD or D contains a copy ofFk. Hence, we may
assume thatD contains a copy ofFk, which is a member ofTk with k+1 edges. ByTheorem 2.3, there
is a(k+1,d3d3

)-gadget-free setZ⊆m/dk+2 of size

|Z| ≥ (m/dk+2)/ec′(log(m/dk+2))1/blog2kc
= m/ec(logm)1/blog2kc

for an appropriatec = c(d,k). This means that we can useLemma 4.1with f (m) = ec(logm)1/blog2kc
. It is

easy to check that in this caseq(ε) in the statement ofLemma 4.1satisfies

q(ε)≥
(

1
ε

)c′(log1/ε)blogkc

, (5.2)

for an appropriate constantc′ = c′(d). By Lemma 4.1we get ak-graph, which isε-far from being
inducedD-free, and contains onlyO(nd/q(ε)) copies ofD. By Lemma 4.2the query complexity of any
one-sided-error property-tester forP∗D can be bounded from below byq(ε)1/d, which is (5.2), with c′

replaced byc′/d.

Note, that though the statement ofTheorem 1.3states the improved lower bounds only fork-graphs
on at leastr(k) vertices, it should be clear that the same lower bound also applies to anyk-graph on
less thanr(k) vertices such that either thek-graph or its complement spans a copy ofFk. This, in
particular, applies toFk itself, thus, as mentioned after the statement ofTheorem 1.3, we indeed get
an improvement on the lower bound for testingP∗Fk from [17]. It is worth mentioning that if one is
willing to replaceblogkc with blogdk/2+1ec in the statement ofTheorem 1.3, then one can obtain this
slightly weaker lower bound forany k-graph on at leastk+ 1 vertices, instead ofk-graphs on at least
r(k) vertices. One just has to note that for any set ofk+1 vertices, either thek-graph or its complement
spans at leastdk/2+ 1e edges. One then proceeds as in the proof ofTheorem 1.3by taking a setZ,
which is(dk/2+1e,d3d2

)-gadget-free instead of(k+1,d3d2
)-gadget-free.

6 More on Linear Equations and Extremal Hypergraphs

In this section we proveTheorem 1.7. Analogously to our proof technique forP∗D, the first step in the
proof of Theorem 1.7is to show that given a hyper-cycleD = (V,E) on d vertices we can construct
a k-graph that contains many copies ofD such that from each copy ofD we can infer a certain linear
equation. The main idea, as inLemma 3.2, is to give an algebraic construction of such a graph, but as
we explain below, in this case we have some additional difficulties.

Let m be an integer,Z⊆ [m] andD a hyper-cycle of sized, whose vertices are numbered{1, . . . ,d}
as in the definition of a hyper-cycle. We define ak-graphF = F(D,Z) as follows: the vertex set ofF
consists ofd pairwise disjoint sets of verticesV1, . . . ,Vd, where, with a slight abuse of notation, we think
of each of these sets as being the set of integers 1, . . . ,dk+1m. We define the edge set ofF by specifying
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the edge sets of|Z|k copies ofD that we put inF . For every set of (not necessarily distinct) integers
z0, . . . ,zk−1 ∈ Z, we define a copy ofD denotedC = C(z0, . . . ,zk−1): As the vertex set ofC, we choosed
verticesv1 ∈V1, . . . ,vd ∈Vd, where for 1≤ t ≤ d we choosevt = E(z0, . . . ,zk−1, t), andE is the function
defined in (3.1). Note, that for any choice ofz0, . . . ,zk−1 ∈ Z we haveE(z0, . . . ,zk−1, t) ∈ [dk+1m],
thus the vertices “fit” into the setsV1, . . . ,Vd. As for the edges ofC, we simply regard the vertices
v1 ∈V1, . . . ,vd ∈Vd as if they were the vertices 1, . . . ,d in D, namely, if(t1, . . . , tk) ∈ E(D), we put inF
an edge that contains the vertices

E(z0, . . . ,zk−1, t1) ∈Vt1, E(z0, . . . ,zk−1, t2) ∈Vt2, . . . ,E(z0, . . . ,zk−1, tk) ∈Vtk .

The main technical step in this section is the proof of the following lemma, whose role in the proof of
Theorem 1.7is analogous to the role ofLemma 3.2in the proof ofTheorem 1.2andTheorem 1.3.

Lemma 6.1. Let m be an arbitrary integer, Z⊆ [m] and D a hyper-cycle on d vertices. Construct
F = F(D,Z) as above. Suppose v1 ∈V1, . . . ,vd ∈Vd span a copy of D, with vt playing the role of vertex t
in D. Suppose that for1≤ i ≤ d−k+2 edge ei belongs to C(z0,i , . . . ,zk−1,i). Then, for every1≤ j ≤ k−1
there arepositive integers a1, . . . ,ad−k+1 ≤ c = c(d) such that

a1 ·zj,1 +a2 ·zj,2 + . . .+ad−k+1 ·zj,d−k+1 = (a1 +a2 + . . .+ad−k+1) ·zj,d−k+2 .

In order to applyLemma 6.1, we need another notion of linear equations suitable for it, which we
formulate as follows:

Definition 6.2 ((k,h)-linear-free). A set of integersZ ⊆ [m] = {1,2, . . . ,m} is called(k,h)-linear-free
if for everyk positive integersa1, . . . ,ak ≤ h, the only solution of the equation

a1z1 + . . .+akzk = (a1 + . . .+ak)zk+1 , (6.1)

which usesk+1 integers fromZ satisfiesz1 = z2 = . . . = zk+1.

In simple words, ifZ is (k,h)-linear-free, then whenevera1, . . . ,ak ≤ h, the only solution to (6.1)
using integers fromZ, is one of the|Z| trivial solutions. Similar to our proof technique ofTheorem 1.2
andTheorem 1.3, in this case we will also need a dense(k,h)-linear-free sets of integers, with which we
will apply Lemma 6.1.

The main difficulty in provingLemma 6.1is two fold; While we still have to show that we can extract
a linear combination of the integers, as we did inLemma 3.2, we are faced with the following problem;
suppose we manage to extract a linear equation but it is of the formz1 + z2− z3 = z4. In Lemma 3.2
this was not an issue, as in that lemma the required equation only relates 3 integers, thus if we get an
equation of the form, say, 3a−2b = c, we can simply “shift” 2b to the other side and get the required
equation. This is not possible in our case. The problem is even more serious; as we mentioned above
(and analogously to our proof technique forP∗D), our ultimate goal will be to applyLemma 6.1with a
(k,h)-linear-free set of sizem1−o(1). However, it follows from the pigeon-hole principle that the largest
size of a subset of[m] without solutions toz1+z2−z3 = z4 is O(

√
m). Thus, we must make sure that all

the coefficients in the linear equation we extract are positive. One may also ask, why we cannot prove
our lower bounds forPD by using only linear equations with 3 unknowns, like we use forP∗D. The main

THEORY OFCOMPUTING, Volume 1 (2005), pp. 177–216 204

http://dx.doi.org/10.4086/toc


L INEAR EQUATIONS, ARITHMETIC PROGRESSIONS, AND HYPERGRAPHPROPERTYTESTING

reason for that is that forP∗D we can prove a lower bound either forD or its complement, and one of
them must contain a copy ofTk. ForPD, however, we cannot use this reasoning and have to deal withD
itself, which does not necessarily contain a copy ofTk.

The proof ofTheorem 1.7will follow by using Lemma 6.1together with arguments similar to those
used in the proofs ofLemma 3.3, Lemma 4.1andLemma 4.2. The proofLemma 6.1appears in the
following subsection, and the proof ofTheorem 1.7appears inSection6.2.

6.1 Proof ofLemma 6.1

For the proof ofLemma 6.1we need the following simple observation:

Claim 6.3. For a given set of p≤ r distinct integers t1, . . . , tp bounded by r, let A be the matrix(A)i, j =
t p+1− j
i − (ti −1)p+1− j (1≤ i, j ≤ p). Then, there is a nonzero integer vector v, all of whose entries are
bounded (in absolute value) by r2r , such that for1≤ i ≤ p−1 (Av)i = 0, while(Av)p > 0.

Proof. As the integerst1, . . . , tp are distinct, the Vandermonde matrix(V)i, j = t j−1
i is invertible. AsA can

be obtained fromV by rank preserving operations,A is also invertible. ByClaim 2.7there is a nonzero
integer vectorv, all of whose entries are bounded by(r2p)p/2 ≤ (rp)p ≤ r2r , such that for 1≤ i ≤ p−1
we have(Av)i = 0. As A is invertible andv is non zero, it cannot be the case that(Av)p = 0, and if
(Av)p < 0 we can replacev by−v.

As a first step towards the proof ofLemma 6.1we prove the following claim.

Claim 6.4. Let m be an arbitrary integer, Z⊆ [m] and D a hyper-cycle on d vertices. Construct F=
F(D,Z) as inLemma 6.1, and denote byi the vector(i, i2, . . . , ik−1) and byzi the vector(z1,i ,z2,i , . . . ,zk−1,i).
Then the following equation holds

z1 · (2−1)+ . . .+zd−k+1 · (d−k+2−d−k+1) = zd−k+2 · (d−k+2−1) . (6.2)

Also, for every1≤ i ≤ d−k+1 and i+1≤ t ≤ i +k−2 the following equation holds

zi+1 · (t +1− t)−zi · (t +1− t) = 0 . (6.3)

Proof. Let v1 ∈V1, . . . ,vd ∈Vd bed vertices spanning a copy ofD, with vi ∈Vi playing the role of vertex
i in D. For every 1≤ i ≤ d− k+ 1 consider the verticesvi ∈ Vi andvi+1 ∈ Vi+1 and recall that by the
definition of a hyper-cycle they belong toei ∈C(z0,i , . . . ,zk−1,i). If we regardvi andvi+1 as integers we
get from the definition ofF thatvi = E(z0,i , . . . ,zk−1,i , i) and thatvi+1 = E(z0,i , . . . ,zk−1,i , i + 1). From
the definition ofE in (3.1) this means that (note thatz0,i disappears)

vi+1−vi = z1,i · ((i +1)− i)+z2,i · ((i +1)2− i2)+ . . .+zk−1,i · ((i +1)k−1− ik−1) . (6.4)

As in the statement of the claim, let the vectori denote(i, i2, . . . , ik−1) and let the vectorzi denote
(z1,i ,z2,i , . . . ,zk−1,i). Therefore, we can write for every 1≤ i ≤ d−k+1 the vector equation

vi+1−vi = zi · (i +1− i) . (6.5)
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z1,1 +3z2,1 +7z3,1 +z1,2 +5z2,2 +19z3,2 +z1,3 +7z2,3 +37z3,3 = 3z1,4 +15z2,4 +63z3,4

z1,1 +5z2,1 +19z3,1−z1,2−5z2,2−19z3,2 = 0

z1,1 +7z2,1 +37z3,1−z1,2−7z2,2−37z3,2 = 0

z1,2 +7z2,2 +37z3,2−z1,3−7z2,3−37z3,3 = 0

z1,2 +9z2,2 +61z3,2−z1,3−9z2,3−61z3,3 = 0

z1,3 +9z2,3 +61z3,3 = z1,4 +9z2,4 +61z3,4

z1,3 +11z2,3 +191z3,3 = z1,4 +11z2,4 +191z3,4

Figure 1: The linear equations (6.2), E1,2,E1,3,E2,3,E2,4,E3,4,E3,5 whend = 6 andk = 4.

As ed−k+2 contains the verticesvd−k+2 ∈Vd−k+2, . . . ,vd ∈Vd we have for everyd−k+2≤ i ≤ d−1

vi+1−vi = zd−k+2 · (i +1− i) . (6.6)

Summing (6.5) for 1≤ i ≤ d−k+1 and (6.6) for d−k+2≤ i ≤ d−1 we obtain

vd−v1 = z1 · (2−1)+ . . .+zd−k+1 · (d−k+2−d−k+1)+zd−k+2 · (d−d−k+2) . (6.7)

As ed−k+2 contains the verticesv1 ∈V1 andvd ∈Vd, we also have by the same reasoning

vd−v1 = zd−k+2 · (d−1) . (6.8)

Combining (6.7) and (6.8) we obtain (6.2).
In order to obtain the other equations, for any 1≤ i ≤ d− k+ 1 consider edgeei and recall that

it contains the verticesi, . . . , i + k− 1. Note that for everyi + 1 ≤ t ≤ i + k− 2 verticest and t + 1
belong to bothei andei+1. By the same reasoning used to obtain (6.4) and (6.5) we can write for every
i +1≤ t ≤ i +k−2

vt+1−vt = zi · (t +1− t) (6.9)

vt+1−vt = zi+1 · (t +1− t) (6.10)

Combining these equations we get (6.3) for everyi +1≤ t ≤ i +k−2, thus completing the proof.

For the rest of the proof let us use the following notation: for everyi +1≤ t ≤ i +k−2 denote byEi,t

the equation of (6.3). Note, that for every 1≤ i ≤ d−k+1 we havek−2 equationsEi,t . To illustrate the
main ideas of the proof the reader may want to consider the special case whered = 6 andk = 4 depicted
in Figure 1.

We also need the following claim. For its proof, the reader may find it useful to refer to the example
given inFigure 1.
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Claim 6.5. For every 1 ≤ i ≤ d − k + 1 there is a linear combination of(6.2) and equations
Ei,i+1, . . . ,Ei,i+k−2 with integer coefficients, in which the coefficient of zi,1 is positive, while the coef-
ficients of zi,2, . . . ,zi,k−1 vanish.

Proof. Let α1, . . . ,αk−1 denote the unknown coefficients of (6.2) andEi,i+1, . . . ,Ei,i+k−2, respectively, in
the linear combination, which we seek. Suppose we writek−1 linear equationse1, . . . ,ek−1 in unknowns
α1, . . . ,αk−1, where equationei requires the coefficient ofzi,1 to vanish in the linear combination of (6.2),
Ei,i+1, . . . ,Ei,i+k−2 with coefficientα1, . . . ,αk−1. Observing the coefficients ofz1,i , . . . ,zk−1,i in (6.2) and
in Ei,i+1, . . . ,Ei,i+k−2 it is easy to see that the entries of the(k−1)× (k−1) matrix A, whoseith row
contains equationei satisfies the properties ofClaim 6.3. We can now take the entries of the vectorv,
whose existence is guaranteed byClaim 6.3, to be the required integer coefficientsα1, . . . ,αk−1.

Proof ofLemma 6.1. We first observe that (6.2) is an equation inzj,i , where for 1≤ j ≤ k− 1 and
1≤ i ≤ d−k+1 we havezj,i on the left hand side of the equation, and for every 1≤ j ≤ k−1 we have
zj,d−k+2 on the right hand side. Furthermore, all the coefficients in this equation are positive. Finally,
for every 1≤ j ≤ k−1 the sum of the coefficients ofzj,1, . . . ,zj,d−k+1 is equal to(d−k+2) j −1, which
is precisely the coefficient ofzj,d−k+2. It thus follows that (6.2) is thesumof thek−1 equations that we
need to obtain in order to prove the lemma. In order to simplify the notation we now turn to show how
to obtain the linear equation relatingz1,1, . . . ,z1,d−k+2. The other cases are completely identical.

To simplify the rest of the proof, when we later refer tofixing i we mean obtaining a linear equation
in whichz2,i , . . . ,zk−1,i do not appear, while the coefficient ofz1,i is positive. Our main idea of extracting
from (6.2) the required linear equation relatingz1,1, . . . ,z1,d−k+2 is the following: For 1≤ i ≤ d−k+2,
equation (6.2) contains the variablesz1,i , . . . ,zk−1,i , while we want an equation in which onlyz1,i appears.
We thus need to fixi for every 1≤ i ≤ d−k+2. By Claim 6.5we know that for every 1≤ i ≤ d−k+1
we can find a linear combination of (6.2) andEi,i+1, . . . ,Ei,i+k−2, which fixesi. The main problem is
that we need a linear combination which simultaneously fixes anyi. Suppose we first useClaim 6.5in
order to obtain a new equation, denotedE, which fixesi = 1. We would now want to reapplyClaim 6.5
in order to fix i = 2. The only difficulty is that we would now want to take a linear combination of
E2,3, . . . ,E2,k with E, and not with (6.2) as taking a linear combination with (6.2) might “bring back”
z2,1, . . . ,zk−1,1.

However, it is easy to see that we can also find a linear combination ofE2,3, . . . ,E2,k andE, which
fixes i = 2. By Claim 6.5, we know that there is a linear combination ofE2,3, . . . ,E2,k and (6.2), which
fixes i = 2. Consider now the coefficients ofz1,2, . . . ,zk−1,2 in equations (6.2), E1,2, . . . ,E1,k−1 and
E2,3, . . . ,E2,k. Note, that the coefficients, which appear in equations (6.2), E1,2, . . . ,E2,k−2 also appear
in equations (6.2), E2,3, . . . ,E2,k. To be more precise, the coefficients ofz1,2, . . . ,zk−1,2 in equationE1,2

are precisely the coefficients ofz1,2, . . . ,zk−1,2 in (6.2) and for every 3≤ i ≤ k− 1 the coefficients of
z1,2, . . . ,zk−1,2 in equationE1,i are precisely the coefficients ofz1,2, . . . ,zk−1,2 in equationE2,i−1. Thus, as
E is a linear combination of (6.2) andE1,2, . . . ,E2,k−1 we infer that if there is a linear combination of (6.2)
andE2,3, . . . ,E2,k, which fixesi = 2, then there must be such a linear combination ofE andE2,3, . . . ,E2,k.
It is finally important to note that asz1,1, . . . ,z1,k−1 do not appear in equationsE2,3, . . . ,E2,k then in the
new linear equationi = 1 remains fixed.

Note that the above argument can be generalized to any 2≤ i ≤ d − k + 1 as equations
Ei,i+1, . . . ,Ei,i+k−2 do not contain the unknownsz1,p, . . . ,zk−1,p for any p < i, and the coefficients

THEORY OFCOMPUTING, Volume 1 (2005), pp. 177–216 207

http://dx.doi.org/10.4086/toc


N. ALON AND A. SHAPIRA

of zi,1, . . . ,zi,k−1 appearing in (6.2) and Ei−1,i , . . . ,Ei−1,i+k−3 also appear in equations (6.2) and
Ei,i+1, . . . ,Ei,i+k−2. Hence, we can apply an iterative procedure, where in theith step we add to (6.2)
an appropriate linear combination of equationsEi,i+1, . . . ,Ei,i+k−2, which fixesi. Moreover, later itera-
tions of this procedure will not change the coefficients ofz1,p, . . . ,zk−1,p for any p < i. In particular, if
in iterationp we fixedi = p, then we will also have this property at the end of the process. We have thus
established that for 1≤ i ≤ d−k+1 our process obtains in iterationi a linear combination in which for
everyp≤ i the coefficient ofz1,p is positive, while the coefficients ofz2,p, . . . ,zk−1,p have vanished. We
now observe that as both in (6.2) and (6.3) the coefficient ofzi,d−k+2 is equal to the sum of the coeffi-
cients ofzi,1, . . . ,zi,d−k−1, it must be the case that after iterationd− k+ 1 the coefficient ofz1,d−k+2 is
positive while the coefficients ofz2,d−k+2, . . . ,zk−1,d−k+2 have vanished, thusi = d−k+2 is also fixed.
This means that we have obtained the required equation relatingz1,1,z1,2, . . . ,z1,d−k+2. As for the size of
the integers in this linear equation, note that the coefficients of (6.2) and (6.3) are bounded bydk ≤ dd.
As we apply the above iterative processd− k+ 1 < d times,Claim 6.3guarantees that when we are
done the coefficients are bounded by a function ofd only.

Corollary 6.6. For every d, there is c= c(d) such that if we construct the k graph F inLemma 6.1
with a (d− k+ 2,c)-linear-free set Z, then F contains precisely|Z|d copies of D spanned by vertices
v1 ∈V1, . . . ,vd ∈Vd, with vt playing the role of vertex t in D.

Proof. The main idea is simply to show that the only such copies ofD belong to the same copy of
D defined for some choice of integersz0, . . . ,zk−1 ∈ Z. Consider any copy ofD spanned by vertices
v1 ∈V1, . . . ,vd ∈Vd, with vt playing the role of vertext in D. Suppose for every 1≤ i ≤ d−k+2 edgeei

of D belongs toC(z0,i , . . . ,zk−1,i). Lemma 6.1guarantees that for every 1≤ j ≤ k−1 there are positive
integersa1, . . . ,ad−k+1 ≤ c = c(d) such that the following equation is satisfied

a1 ·zj,1 +a2 ·zj,2 + . . .+ad−k+1 ·zj,d−k+1 = (a1 +a2 + . . .+ad−k+1) ·zj,d−k+2 .

Therefore, if we use a setZ, which is(d−k+2,c)-linear-free it must be the case that for every 1≤ j ≤
k−1, we havezj,1 = zj,2 = . . . = zj,d−k+2. To complete the proof we just have to show that we also have
z0,1 = z0,2 = . . . = z0,d−k+2 as this will imply that all the edges ofD belong to the same copy defined
usingz0,1,z1,1, . . . ,zk−1,1. To show this we observe that for every 2≤ t ≤ d− k+ 2, vertexvt ∈ Vt is
common to bothet−1 andet . This means that

E(z0,t−1, . . . ,zk−1,t−1, t) = vt = E(z0,t , . . . ,zk−1,t , t) .

As we already know that for every 1≤ j ≤ k−1 we havezj,i = zj,i+1, the above equation implies that
z0,t−1 = z0,t holds for every 2≤ t ≤ d−k+2, thus completing the proof.

6.2 Proof ofTheorem 1.7

GivenLemma 6.1, the proof ofTheorem 1.7follows by going along the lines of the proofs ofLemma 3.3
and Lemma 4.1, with one key difference, which we shall explain. In order to avoid repeating the
same arguments we will just sketch them, while assuming that the reader is familiar with the proofs
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of Lemma 3.3andLemma 4.1. As in Lemma 4.1, we will also need a large set of integers that does
not satisfy linear equations similar to the one we extract by usingLemma 6.1. We will thus need the
following:

Lemma 6.7. For every k and h there is c= c(k,h), such that for every n, there is a(k,h)-linear-free
subset Z⊂ [n] = {1,2, . . . ,n} of size at least

|Z| ≥ m

ec
√

logm
. (6.11)

By using Behrend’s technique [7], this lemma has been proved in [4] and [9] for the case ofk = 3
and arbitraryh, and in [1] for the caseh = 1 and arbitraryk. As the proof of the above lemma simply
combines the ideas of [1] and [4], we do not include it here.

Proof ofTheorem 1.7, sketch.To further simplify the proof, we will usec to indicate (possibly distinct)
constants that depend only ond. Let D be a fixedk-graph ond vertices, whose coreL, contains a hyper-
cycleR, of sizer (≤ d). Denote bỳ (≤ d) the size ofL and assume we rename its vertices such that a
copy ofR is spanned by the firstr vertices ofL, with every vertex 1≤ i ≤ r playing the role of vertex
i of R. As in the proof ofTheorem 1.2, the main idea is to applyLemma 4.2by constructing ak-graph
H that isε-far from satisfyingPD, and contains onlynd/q(ε) copies ofD, with q(ε)≥ (1/ε)clog1/ε . To
this end, we will first construct ak-graphF (as inLemma 3.3), and then take an appropriate blow-up of
it (as inLemma 4.1).

Givenε, let m be the largest integer satisfying

ec
√

logm < 1/ε . (6.12)

It is easy to see that
m> (1/ε)clog1/ε . (6.13)

Let Z be a(r−k+2,c)-linear-free subset of[m]. Note, that byLemma 6.7we have

|Z| ≥ m

ec
√

logm
.

Define ak-graphF as follows: It has̀ clusters of verticesV1, . . . ,V̀ of sized`+2m each (thus,F has
`d`+2m vertices). For each set ofk integersz0, . . . ,zk−1 ∈ Z we put in a copy ofL in F spanned by the
verticesv1 ∈V1, . . . ,v` ∈ V̀ with vi playing the role ofi, andvi = E(z0, . . . ,zk−1, i), with the functionE
define in (3.1) (note, that the vertices fit into the setsV1, . . . ,V̀ ). As in Lemma 3.3item (2), one can
easily show that we have thus defined

|Z|k ≥ mk

ec
√

logm

copies ofL, with each pair sharing at mostk−1 vertices. In particular these copies are edge disjoint. It
will also be important for the rest of the proof to note that the sub-hypergraph ofF , which is spanned by
the firstr vertices, is precisely thek-graph defined inLemma 6.1(with Rbeing the hyper-cycleD in the
statement of the lemma). We thus get byCorollary 6.6that if we took an(r−k+2,c)-linear-free setZ,
with a sufficiently smallc (in terms ofd), then there are|Z|r choices of verticesv1 ∈V1, . . . ,vr ∈Vr such
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thatv1, . . . ,vr span a copy ofR with vt playing the role of vertext or R. In what follows we call such
copies ofR nice.

Suppose we construct ann vertexk-graphH, by taking ann/(`d`+2m) blow-up ofF (recall thatF
has`d`+2mvertices). By repeating the argument ofClaim 4.4, it is not difficult to see that asF contains
at leastmk/ec

√
logm edge disjoint copies ofL, we may infer thatH contains at leastnk/ec

√
logm edge-

disjoint copies ofL. By our choice ofm in (6.12) we get thatH is ε-far from beingL-free. It can be
easily shown that asL is the core ofD, in this caseH is alsoε-far from beingD-free.

We are thus left with showing thatH contains relatively few copies ofD. By repeating the argument
of Claim 4.6, it can be shown that asF spans at most|Z|k nice copies ofR, thenH spans at most

|Z|k
( n

`d`+2m

)r
≤mk

( n
`d`+2m

)r
= O(nr/m)

nice copies ofR (observe that we always haver > k). Assume we prove that every copy ofD spanned
by H contains a nice copy ofR. It would thus follow that as each copy ofR is contained in at most( n

d−r

)
≤ nd−r copies ofD, that H spans at mostO(nd/m) copies ofD. By (6.13) we would get the

required upper bound on the number of copies ofD spanned byH.
We thus only have to show that every copy ofD spanned byH contains a nice copy ofR. Given a

copy ofD in H, consider the following homomorphismϕ : V(D)→V(L): supposev∈V(D) is one of
the vertices (inH) of the independent set that replaced vertexi′ ∈Vi , then we mapv to i. Note that this is
indeed a mapping fromV(D) to V(L). Also, note that if(i1, . . . , ik) 6∈ E(L) then inF there are no edges
connecting vertices ofVi1, . . . ,Vik. As H is a blow-up we infer thatϕ is indeed a homomorphism. As
L is by definition a sub-hypergraph ofD, the mappingϕ induces a homomorphismϕ ′, from L to itself.
By the minimality ofL (recallDefinition 1.5), we may infer thatϕ ′ is in fact an automorphism, that is
(i1, . . . , ik) ∈ E(L) ⇔ (ϕ ′(i1), . . . ,ϕ ′(ik)) ∈ E(L). This means thatϕ ′ maps some copy ofR⊂ D to the
sub-hypergraph ofL spanned by vertices 1, . . . , r. Finally, by our definition ofϕ this means that this is a
nice copy ofR.

7 Proof of Theorem 1.4

We start this section with the proof ofTheorem 1.4part (i). To this end, we need the following well
known lemma of Erd̋os and Simonovits.

Lemma 7.1 ([10]). For every t and k, there are constants n0 = n0(t,k) , c= c(t,k) andγ = γ(t,k) > 0
with the following properties: For every t1, . . . , tk ≤ t, every k-graph on n≥ n0 vertices, which contains
δ (n) ·nk > nk−γ edges, contains at least cδ (n)t∗nt copies of Kt1,...,tk, where t∗ = t1 · . . . · tk andt = t1 +
. . .+ tk.

We comment that the proof of this lemma is described in [10] for the caset1 = . . . = tk. However,
simple modifications of the argument give the above lemma. Observe, that ak-graph, which isε-far
from beingD-free, whereD = Kt1,...,tk, must contain at leastεnk � nk−γ edges. From the above lemma
we infer that such ak-graph must containcε t∗nt copies ofK. Hence, as observed in [17], there is a
one-sided-error property-tester forPD that simply samplesO((1/ε)t∗) sets oft vertices, and accepts iff
it finds no copy ofD. By the above claim it finds a copy ofD with high probability. As we now show,
we can improve this simple upper bound and show a lower bound, which is nearly tight in many cases.

THEORY OFCOMPUTING, Volume 1 (2005), pp. 177–216 210

http://dx.doi.org/10.4086/toc


L INEAR EQUATIONS, ARITHMETIC PROGRESSIONS, AND HYPERGRAPHPROPERTYTESTING

Proof ofTheorem 1.4, part (i). Let c andn0 be the constants ofLemma 7.1. Given an inputk-graphH
on n > n0 vertices, the algorithm samples 10t̄/(cε t∗/tk) vertices and declaresH to beD-free iff it finds
no copy ofD in the sub-hypergraph spanned by the set of vertices. Clearly, ifH is D-free, the algorithm
acceptsH with probability 1. So assumeH is ε-far from beingD-free. We wish to show that with high
probability the set of vertices spans a copy ofD. Recall that such ak-graph must contain at leastεnk

edges.
For a vertexv denote byd(v) the degree ofv, namely, the number of edges ofH to whichv belongs.

For a vertexv in H denote byH(v) the following (k− 1)-graph: we take all the edges to whichv
belongs and removev from them. Note that the number of edges ofH(v) is preciselyd(v), and thatH(v)
obviously has at mostn vertices. It follows fromLemma 7.1, that for some fixedγ > 0, if d(v) > nk−1−γ ,
thenH(v) contains at least

c

(
d(v)
nk−1

)t∗/tk

nt ′

copies of the(k−1)-partite(k−1)-graphKt1,...,tk−1, wheret ′ = t̄− tk = t1+ . . .+ tk−1. On the other hand,
if d(v) < nk−1−γ , then it might be the case thatH(v) contains no copies ofKt1,...,tk−1 at all. In any case,
however,H(v) contains at least

c

((
d(v)
nk−1

)t∗/tk

−
(

1
nγ

)t∗/tk
)

nt ′ (7.1)

copies ofKt1,...,tk−1. Hence, all verticesv belong to at least this many copies of thek-partitek-graph
K = Kt1,...,tk−1,1, wherev plays the role of the single vertex in the last vertex class ofK. Suppose we
samplēt vertices uniformly at random fromH. Let Xv be an indicator random variable for the event that
these vertices form a copy ofK along with vertexv, such thatv plays the role of the single vertex in the
last vertex class ofK. By (7.1),

Pr[Xv = 1]≥max

(
0,c

(
d(v)
nk−1

)t∗/tk

−c

(
1
nγ

)t∗/tk
)

.

DefineX = ∑vXv. The expectation of|X| thus satisfies

E(|X|) = ∑
v

Pr[Xv = 1]≥ c∑
v

(
d(v)
nk−1

)t∗/tk

−c∑
v

n−γt∗/tk

≥ cn

(
∑vd(v)

nk

)t∗/tk

−cn1−γt∗/tk ≥ cn(kε)t∗/tk −o(n)≥ 2cnε
t∗/tk,

where in the second inequality we have applied Jensen’s inequality to the first summation, and in the
third we have used the fact thatH must contain at leastεnk edges. Observing that|X| ≤ n, we conclude
that

2cnε
t∗/tk ≤ E(|X|)≤ cnε

t∗/tk +n·Pr[|X| ≥ cnε
t∗/tk] .

Therefore,
Pr[|X| ≥ cnε

t∗/tk]≥ cε
t∗/tk .
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Hence, by Markov’s inequality, after sampling 10/cε t∗/tk sets oft ′ vertices, with probability at least 9/10
we find at least one set oft ′ vertices, which forms a copy ofK with at leastcnε t∗/tk of the vertices of
H. After finding this set oft ′ vertices, all we need istk vertices that form a copy ofK with this set of
vertices, as together they would form a copy ofD. By assumption, there are at leastcnε t∗/tk vertices
that form a copy ofK with the set oft ′ vertices. By Markov’s inequality, after sampling 10tk/(cε t∗/tk)
vertices, with probability at least 9/10 we find the required set oftk vertices. In total, we sampled
10(t1 + . . .+ tk)/(cε t∗/tk) vertices, as needed.

Proof ofTheorem 1.4, part (ii). Consider the randomk-graphH(n,2kkε), that is, ak-graph onnvertices,
where each set ofk vertices forms an edge randomly and independently with probability 2kkε. The
expected number of edges inH is obviously 2kkε

(n
k

)
≥ 2εnk, hence, by a standard Chernoff bound, the

number of edges inH is at least32εnk with probability at least 3/4 (in fact, the probability is 1−2−Θ(nk)

but we do not need this stronger estimate here). As byLemma 7.1, everyk-graph withε

2nk edges contains
a copy ofD, we get that with probability at least 3/4H is ε-far from beingD-free.

Fix a set ofd = t1+ . . .+tk vertices, whereti is the number of vertices ofD in its vertex-class number
i. The number of ways to partition this set intok subsets of sizesti is at mostd!. The probability that
any of these partitions spans a copy ofD is at most

( t∗

|E|
)
(2kkε)|E|, wheret∗ = t1 · . . . · tk. Therefore, the

expected number of copies ofD in H(n,2kkε) is at most(
n
d

)
d!

(
t∗

|E|

)
2kk

ε
|E| ≤ nd(t∗2kk

ε)|E| .

By Markov’s inequality, the probability that the number of copies ofD is 4 times its expectation is at
most 1/4. We conclude that there is ak-graph, which is bothε-far from beingD-free, and yet contains
less than

4nd/(1/t∗2kk
ε)|E|

copies ofD. By Lemma 4.2, the query complexity of a one-sided-error property-tester forPD is
Ω
(
(1/ε)|E|/d

)
.

8 Concluding Remarks and Open Problems

• The most interesting problem related to this paper is to give a complete characterization of the
k-graphsD for whichPD is easily testable. We believe that the techniques presented in this paper
should be useful in resolving this problem. It is known that fork= 2, propertyPD is easily testable
iff D is bipartite. It seems likely that the “right” characterization is that for largerk, propertyPD is
easily testable iffD is k-partite. UsingTheorem 1.2, we can rule out the possibility of extending
the characterization ofk = 2 to, “PD is easily testable iffD is 2-colorable.” Indeed, note that for
k > 2, Fk, the completek-graph onk+ 1-vertices, is 2-colorable. On the other hand, asPFk is
equivalent toP∗Fk, we get fromTheorem 1.2thatPFk is not easily testable.

• In light of Theorem 1.2one may hope to show that the onlyk-graphsD, for which P∗D is easily
testable are the singlek-edges. This, however, is false. As shown in [4], whenk= 2 andD is a path
of length 2, propertyP∗D has a one-sided-error tester, whose query complexity isO(log(1/ε)/ε).
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It would thus be interesting to decide if forD = D3,2 (seeTheorem 1.2), the propertyP∗D is easily
testable.

• It would also be very interesting to improve the lower bounds obtained inTheorem 1.3. It should
be noted that using our techniques, one cannot obtain lower bounds that match the current upper
bounds. For example, the best known upper bound for testingP∗D, for D being a triangle, has
query complexity that is a tower of exponents of height polynomial in 1/ε. As is evident from the
statement ofLemma 4.1, in order to prove a matching lower bound using our methods, one would
have to use an(3,h)-gadget-free subset of the firstm integers of sizeΩ(m/ log∗m) (and observe
that such a set contains no 3-term arithmetic progressions). However, by a result of Bourgain [8],
every subset of the firstm integers of sizeΩ

(
m/
√

logm/ log logm
)

contains a 3-term arithmetic
progression. Thus, the best lower bound one might hope to prove using these techniques is roughly
2log(1/ε)/ε2

, which is very far from the current upper bound. Also, any one-sided-error property-
tester forPK3 = P∗K3

with query complexity 2O((1/ε)2) would imply an improvement of Bourgain’s
result.
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[2] * N. ALON, R. A. DUKE, H. LEFMANN, V. RÖDL, AND R. YUSTER: The algorithmic aspects of
the regularity lemma.J. of Algorithms, 16:80–109, 1994. Also, Proc. 33rd IEEE FOCS, Pittsburgh,
IEEE (1992), 473-481. [FOCS:10.1109/SFCS.1992.267804, JAlg:10.1006/jagm.1994.1005]. 1.2

[3] * N. ALON, E. FISCHER, M. KRIVELEVICH , AND M. SZEGEDY: Efficient testing of large graphs.
Combinatorica, 20:451–476, 2000. Also, Proc. of 40th FOCS, New York, NY, IEEE (1999), 656–
666. [Combinatorica:mwapje2fdyk7ma2e]. 1.2, 4.1, 4.4, 4.7

[4] * N. ALON AND A. SHAPIRA: A characterization of easily testable induced subgraphs. InProc.
of the15th Annual ACM-SIAM SODA, pp. 935–944. ACM Press, 2004. Combinatorics, Probability
and Computing, to appear.1.2, 1.4, 1.5, 2.1, 6.2, 8

[5] * N. ALON AND A. SHAPIRA: Testing subgraphs in directed graphs.JCSS, 69:354–
382, 2004. Also, Proc. of the 35th STOC, 2003, 700–709. [STOC:780542.780644,
JCSS:10.1016/j.jcss.2004.04.008]. 1.2, 1.2, 1.4

[6] * N. ALON AND A. SHAPIRA: On an extremal hypergraph problem of Brown, Erdős and Śos.
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